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Abstract

Advocates of dynamic systems have suggested that higher mental processes are based on

continuous representations.  In order to evaluate this claim, we first define the concept of

representation, and rigorously distinguish between discrete representations and continuous

representations.  We also explore two important bases of representational content.  Then, we

present seven arguments that discrete representations are necessary for any system that must

discriminate between two or more states.  It follows that higher mental processes require discrete

representations.  We also argue that discrete representations are more influenced by conceptual

role than continuous representations.  We end by arguing that the presence of discrete

representations in cognitive systems entails that computationalism (i.e., the view that the mind is

a computational device) is true, and that cognitive science should embrace representational

pluralism.
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1.  Introduction.

Cognitive science is young.  It has been less than 150 years since the scientific method

began to be applied in earnest to cognitive phenomena.  One mark of cognitive science's youth is

that paradigm shifts -- wholesale changes in the way we conceptualize the scientific basis of the

field -- are common.  It has been less than 50 years since computationalism, the current dominant

paradigm, became ascendant in cognitive science, replacing behaviorism's positivist grip on the

field.  Computationalism is the view that thinking involves algorithmic processes operating over

representations that serve as the data structures of the mind (see Dietrich, 1990 and 1994, and

Dietrich and Markman  2000a, for an extended discussion of computationalism).

Another mark of the youth of cognitive science is the existence of significant problems

with its foundations.  The science of computation is still being developed, so both cognitive

science and computational theory are being worked out simultaneously.  Furthermore, the

foundational concept of representation also has a number of unsolved mysteries.  For example,

there is no agreed upon theory of representational content.  Finally, there are many cognitive

phenomena that are difficult to explain within the computational paradigm.  Despite nearly 50

years of research, we do not yet have machines that can communicate, read, or classify with even

the skills of an average five-year-old child.
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Many sciences have significant unsolved problems, and these problems form the basis of

the daily work of scientists in the field.  Most of these problems are finally solved in ways that fit

within a science's current paradigm.  Only rarely do the solutions to these problems require a

radical restructuring of the theoretical basis of a field.  This success instills confidence in the

paradigm.  But, because of its youth, unsolved problems in cognitive science are a source of

doubt that the computational paradigm is correct.  There is, therefore, significant temptation to

assume that computationalism is wrong, and that the unsolved problems are signs that a new

paradigm is needed.

The main way to attack computationalism, at least the main way it has been attacked

historically, is to show that cognition is incompatible with the notion of representation.  Logically

speaking, there are two ways to do this.  One can try to show that cognition doesn't require any

representations at all, and that representations just confuse the issues; or one can try to show that

cognition does require representations but that the representations have properties that prevent

them from being processed by algorithms.  Despite the rhetoric (e.g, the title of Brooks' 1991

paper 'Intelligence without representation'), very few researchers have tried the first approach,

and for a rather deep reason that was not widely appreciated.  We have made an extensive

argument that the minimal, core notion of a representation  -- what we define as an internal

mediating state -- has to be used in all kinds of cognitive explanations (Dietrich and Markman,

2000a; Markman and Dietrich, 2000a and b
1
.  (van Gelder is one who has actually tried to argue

that cognition is possible without representations (van Gelder, 1995), but his view is now

regarded as erroneous.  See Bechtel, 1998).

The second approach, arguing that cognition requires representations that are not

manipulable by algorithms is by far the most favored approach.  A current example of this

approach that has been proposed with some force is dynamic systems theory (e.g., Port and van

                                                  
1 The literature on the necessity of some kind of representation for the possibility of cognition is large.  For
some classical texts on the topic, see: Bruner, 1957; Fodor, 1975; Marr, 1982.  For a good, modern
discussion, see Pinker, 1997.
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Gelder, 1995; Thelen and Smith, 1994).  Dynamic systems are collections of nonlinear differential

equations that express the way continuous quantities change over time.  Advocates of this view

argue that a cognitive science based on dynamical systems can dispense with the kinds of

representations and processes that have been the norm under the computational view.

The dynamic systems view differs from computationalism in the kinds of representations that are

assumed to be necessary for cognitive processing.  The dynamic systems approach posits that

continuous, time-dependent representations are sufficient to explain cognitive processing.  This

view explicitly tries to conclude that discrete representations (e.g., symbols) are not necessary for

understanding cognitive phenomena, and using discrete representations will lead cognitive

science astray (see, for example, Bickhard and Terveen, 1995; Horgan and Tienson, 1996; Port and

van Gelder, 1995; Thelen and Smith, 1994; van Gelder, 1995).

In this paper, we argue that this conclusion is false; cognitive systems do require discrete

representations.  To establish this point, we first define the concept of representation, and

distinguish between discrete and continuous representations.  Then, we present seven arguments

supporting the claim that cognitive systems must have discrete representations.  We further show

that the presence of discrete representations in cognitive systems entails that computationalism is

the proper paradigm for cognitive science.  Finally, we suggest that cognitive science should

embrace representational pluralism, because cognitive systems are likely to involve many

different kinds of representations.

2.  Defining discrete representations

In order to distinguish between discrete and continuous representations, we first give a definition

for the concept of representation.  This definition is quite broad, and is intended to encompass

many different types of proposals that cognitive scientists have made about representation.  We

have defended this view of representation extensively elsewhere, and so we will focus here only
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on points that will be relevant for the later discussion (see Markman, 1999, Markman & Dietrich,

2000, for more discussion).

2.1.  A general definition of mental representation

A cognitive agent is an organism or artificial system that thinks.  An agent takes input from the

outside world and performs actions that affect the outside world.  In addition, the cognitive agent

has subcomponents that we refer to as systems.  We define a system as any subcomponent within

the cognitive agent that uses information in an attempt to satisfy its goals.  Systems, on this

definition, must have feedback loops (at least negative ones) because they need to determine

whether or not their goals are satisfied.  Some of an agent's systems take input from the agent's

external environment, but for a cognitive agent of any complexity, i.e., one with many interacting

systems, most often a system's input is the output of some other system within the agent.  The

output of a system may likewise be an action that affects the outside world or, frequently,

information that is used as input by another system within the cognitive agent.

On this view, a representation is any internal state that mediates or plays a mediating

role between a system's inputs and outputs in virtue of that state's semantic content.  We define

semantic content in terms of information causally responsible for the state, and in terms of the

use to which that information is put.  Hence, any state that mediates between the input to an

agent and the actions performed by the agent is a representation (this is somewhat unintuitive

because it is so inclusive, but it has enormous benefits, especially in unifying cognitive science;

see below and Markman and Dietrich, 2000a).

This definition can be expressed as four necessary and jointly sufficient conditions on the

existence of representations inside an agent: 1) there must be at least one component (i.e., a

system) within the agent that has internal states that carry information and that govern the

system's behavior, 2) there must be an environment external to the system (as noted, this need

not be, and for most systems in the agent won't be, the environment external to the agent), 3)

there must be informational relations between the system's environment and the system's
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internal states that determine how the two correspond, 4) the system must have internal

processes that use the information in the internal states to perform processes such as

accomplishing goals and solving problems (see Markman and Dietrich, 2000a, for a more detailed

discussion of these four conditions).

In order to serve as a mediator, a representation's content has to be explicit.  That is,

content must be psychologically real in order to be causally efficacious, and causal efficacy

requires explicitness.  As we discuss below, content is a kind of information, and implicit

information (e.g., the number four in 2 + 2) is not causally efficacious because no process can use

it.   

It is important to be careful here.  We do not define 'explicit' in terms of being physically

manifested, that is, in terms of what physics studies.  Another way to put this point is to say that

representations have to take part in mental causation, but the physical laws that govern the same

instance of mental causation in different agents may be different.  Helen's beauty caused a

thousand ships to be launched, but there is nothing at the level of physics that separates instances

of beautiful things from instances of non-beautiful things (some particle physicists do study

beauty, but not the kind we refer to here).  Therefore, we are not saying, nor are we committed to

the view that the semantic content of a representation is its physical manifestation.  That is, we

are not committed to a strong reductionism whereby psychological explanations are replaceable

by physical ones.

In the computational view of mind, mental causation is identified with a level of

explanation involving representations and processes.  As a simple example, consider a computer

running the spell-checker in a word processor.  The spell-checker compares strings such as 'teh' to

a list of words, and finding 'the' queries the user that perhaps 'teh' is a misspelling of 'the'.  This

simple explanation is couched at the level of the functioning word processor running its spell-

checker.  That is, the word processor is reified and treated as a separate, stand-alone entity.  The

technical term for the spell-checker is a virtual machine .  ('Virtual' does not mean 'not real.'  The
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reality of this level of explanation is readily apparent when one has to debug the spell-checker or

alter it, say, by adding or deleting words from it (see Dietrich & Markman, 2000a)).  The string

'teh' has to have a physical manifestation as a pattern of bits in a memory location, as does the

spell-checker, and indeed, as does the entire word processor.  But the level of explanation at

which these bit patterns exist is far below the level of the spell-checker and is usually not relevant

to explaining, augmenting, or debugging the spell-checker.  Indeed, the physical instantiation of

this word processor will vary widely depending on the particular computer on which it is run.

The conclusion to be drawn here is that the physical level is not the only level at which

causation occurs.  Physical causation is just one level of causation, and causation occurs in its

own way in all the virtual machines that can be used as higher level descriptions of the physical

machine (Marr, 1982; Pylyshyn, 1980).  This in turn means that the psychological level of

explanation is a real level and that psychological explanations are ineliminable.  Hence, when we

say that semantic content has to be explicit, we mean that it must be explicit in some virtual

machine.  Being explicit in a virtual machine entails having a physical manifestation, but the

physical manifestation is not 'more real,'  and is not to be equated with the content.

Given this foundation, we can discuss the way representations come to have content at

the level of mental causation.  The content of a representation derives from two separate sources.

The first source is external and informational, by which we mean that there are informational

relations between the representation and states in the system's external environment (which is, to

repeat, not necessarily the environment external to the agent) that connect the representation

with the external states it represents.  We will often refer to this source of semantic content as

correspondence.
2

                                                  
2 When we use the term 'information' we mean externally provided information in the sense just defined.
See Markman and Dietrich, 2000a, for our technical discussion of information in representation which
borrows from and extends Dretske's theory, (1981).
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The second source of content is internal and functional, by which we mean that there are

various internal processes that operate on the representations that, in virtue of their operation,

give rise to (and are in turn constrained by) functional, logical, and associative relations between

the representations.  Because representations are individuated by their contents and their

structure, the functional role source of representational content entails that representations are in

part individuated by what they do.  Functional relations are rather numerous and usually

implicit, so there must be some mechanism that reifies some of the functional relations and

makes them an explicit a part of the representations.  (For more on the functional source, see, e.g.,

Millikan, 1984; our view about the origins of representational content is similar to Bechtel's

(1998)).
3

The two sources typically work together to establish a representation's content.  That is,

both correspondence and functional role influence the content of a representation.  Though the

two sources work together, they generally do not contribute equally to the content of a particular

representation.  For example, the content of early sensorimotor representations is primarily fixed

by external, informational relations, particularly for continuous representations such as vibrating

ear drums and the like.
4
  In contrast, higher, more abstract, less modality-specific representations

have their content fixed primarily by their functional roles.  Some higher-level, abstract

representations no doubt have their content fixed almost entirely by functional role.  For

example, concepts such as infinity, deity, sacredness, profundity, the universe depend primarily

                                                  
3 In terms of temporal precedence, it is likely that the informational source precedes the functional, internal
source, especially at the sensory surface of the agent.  But, perhaps sometimes, a representation's functional
role precedes its informational relations.  This might happen, for example, if certain concepts (a kind of
representation) are innate.

4  It might be thought that vibrating ear drums are not representations.  They are not mental representations,
to be sure, but they are representations.  Not all representations which a cognitive system needs are mental
ones.  Seeing vibrating ear drums as representations is a small price to pay for the power and coherence of
the resulting theory (in Markman and Dietrich, 2000a).  The two main conclusions of this theory are that 1)
many different representational types, methodologies, and explanatory models are going to be needed to
explain something as complex as the mind, and 2) all of these representational types can be derived by
adding various properties to the single, invariant notion of a mediating state (for details, see Markman and
Dietrich, 2000a).
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on their functional roles and little on their informational connections to the world because these

concepts vastly outstrip their informational content.

It might be that at least some concepts are strictly functional because they are connected

to absolutely nothing in the system's external environment.  This possibility is unlikely, because it

is hard to imagine a concept that is not connected to anything external to the system (Barsalou

(1999) defends the importance of perceptual processing in very abstract concepts.)  Even

contradictory concepts such as round-square have some correspondence, because the

constituents (round and square) have correspondences external to the system.  Thus, the

contradictory concept can be grounded in the correspondence of its constituents.

Our definition of a representation is not intended as a theory of representational content.

We are specifying quite generally and abstractly the conditions that a system's internal states

have to meet to be representations.  At present, our proposal lacks the detail needed to classify it

as a genuine theory.  It is as if we had said that to have a fire one needs heat, fuel, and oxygen

without saying how one goes about getting some heat, fuel, and oxygen, and without saying

much about the three ingredients work together.  To get a theory of content, we would have to

solve a suite of problems that include the problem of reference (does the existence of an

informational relation between a representation and something in the environment entail that the

representation refers?), the problem of representational error (all representations allow

misrepresentation, but how does a representation have content if the representation doesn't

correspond to anything in the environment, i.e., if it doesn't refer?), the problem of holism (does

changing a miniscule part of a representation's functional role change the meaning of the

representation?), and the problem of explaining how reification of functional role works.

However, we think that our definition of representation is robust and clear enough to work as a

basis for our definition of discrete representations.
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2.2.  Discrete representations

Our goal in this paper is to defend the claim that cognitive systems have discrete representations,

and the further methodological claim that theories of cognitive systems need to postulate and use

discrete representations.  Having given a definition of representation, we now turn to a definition

of discrete (and continuous) representations.  The standard way of defining discreteness is to

consider a set of items and define discreteness over that set.  A set is discrete if and only if it has

gaps between its members.  If the set has no gaps whatsoever between its members, it is

continuous (and vice versa).  For example, the set of rational numbers (numbers of the form p/q)

is discrete.  Though there are an infinite number of rationals and though the rationals are dense

(between any two of them there is a third rational), the set has gaps: e.g., π and √2 are not in the

set.  Indeed all the irrationals are missing.  The set of real numbers (the rationals together with

the irrationals) is continuous because this set has no gaps -- it is missing no numbers.  This

treatment of discreteness and continuity codifies the intuition that discreteness means that there

are several different individual entities that can be discriminated whereas continuity, in one

important sense, means that there is just one unified entity.  Though there are an infinity of real

and rational numbers, the real number line is a unity, but the set of rational numbers is not.
5

Given this, it seems natural to define 'discrete representation' this way: a system has

discrete representations if it contains more than one representation, and the representations are

bounded and uniquely identifiable.   There is something right about this, of course, but there is

something deeper to be said.  If a system categorizes environmental inputs then it has discrete

representations.   A system categorizes inputs if it has internal states that impose classes of

sameness on those inputs.  This means that the system will be in the same state for different

                                                  
5  Technically, sets aren't continuous; functions are.  The property of sets related to continuity of functions
is connectedness.  We use the term 'continuous' in conjunction with representations for three reasons: 1)
this is the term usually used in cognitive science, 2) the distinction between continuity and connectedness is
not that important here because representations can be viewed as functions (from inputs to outputs),
and because functions can be viewed as sets (of ordered pairs), and 3) even though we are eliding the
distinction between 'continuous' and 'connectedness,' the central distinction for our purposes remains: some
representations, but not others, are tightly coupled to gapless events in the environment (e.g., a sound wave)
and hence have no gaps in themselves.   Such representations we call  continuous.
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inputs: though the inputs themselves differ, the system is unable to discern the difference.   This

claim requires some discussion.

There is a connection between being able to categorize and being able to discriminate.  (A

system discriminates inputs if it somehow 'notices' that there is more than thing in the input

stream).  Categorizing inputs is identifying them or classifying them.  Discriminating inputs is

necessary for categorizing, but not sufficient.  To categorize, enduring classes of sameness are

needed.  A system cannot discriminate between two external, environmental states with one,

single continuously varying representation.  With a continuous representation, the system can be

in different states at different times (the sets of states and times having the cardinality of the

reals), but it cannot distinguish among those states.  To distinguish between two external states,

S1 and S2, say, the continuous infinity of intermediate states between S1 and S2 have to somehow

be elided.  The only way to do that is if the system has two internal representations, R1 and R2,

say, that chunk all the states in some neighborhood of S1 in with S1, and all the states in some

other neighborhood of S2 in with S2.  If a system cannot discriminate (and hence cannot

categorize) inputs, but it still represents its environment, then the system's internal states must be

in continuous correspondence with states in its environment.  Hence the system has continuous

representations.

This all suggests the following definition:

A system has discrete representations if and only if it can discriminate its

inputs.

It follows from what we have said, and our definition, that if a system categorizes, then it

has discrete representations
6
.

                                                  
6 It has been suggested that perhaps our definition of discrete representation is too weak.  Also, some have
worried that our definition, coupled with our inclusive definition of representation, gives us our conclusion
– that higher cognitive processing requires discrete representations – too easily, i.e., in a way that doesn't do
justice to all the intuitions and discussion that has surrounded the notion of representation.

It is striking that cognitive science does not have a theory of representation.  There are many
theories out there, but none have the support of anything like the majority of researchers.  How could a
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Given our definition, we can now see the importance of the different contributions of

correspondence and functional role to a mental representation's meaning.  In a continuous

representation, the primary contributor to meaning is correspondence.  The representing relation

that binds a continuous representation to what it is representing is a time-dependent physical law

(i.e., the relation is nomic--see argument seven below).  Such nomic binding is called coupling.

Coupling means that the continuous representations and what they represent are tied together

extremely tightly.  Functional connections between a continuous representation inside the system

can only moderate the effects of the coupling.  For example, imagine a sensory device that

vibrates in the presence of sound waves (like the cochlea of the human auditory system).  Other

representations might change the response properties of the device, perhaps by making it more

rigid.

Discrete mental representations show more influence of the functional role source of

information.  A discrete representation will still have some informational relation that binds it to

situations in the system's environment.  However, this binding is not nomic and is not that tight.

More importantly, a discrete representation will have many connections to other representations

                                                                                                                                                      
notion that is so important be so poorly understood?  There are two main reasons.  One, which we
mentioned at the beginning of our paper is that cognitive science is young and representation is exceedingly
complex.  We just haven't had enough time to figure it out fully.  The second reason (and the one that we
are most concerned to push in this paper) is that cognitive scientists (especially the philosophers) are not
being pragmatic enough.  We contend that it is far better to be inclusive about what counts as a
representation and then let a theory of the different types of representation do the work of separating out the
different types and levels of cognition and mental processing.  Furthermore, it seems that many
philosophically-minded cognitive scientists are hoping that a theory of representation will enable them to
draw a sharp distinction between those processes that are cognition and those that are not.  But such a sharp
distinction is not in the cards.  Cognition is a graded notion, varying between species, individuals within a
species, and even among the various mental or quasi-mental processes within a given individual.  Our
notion of representation has to be flexible enough to accommodate this fact.

So, our definition of representation is inclusive for a reason: it will be much more useful to
distinquish between types of representation armed with an inclusive definition than it will be to forcibly
draw a sharp boundary between representing and not representing, between cognizer and non-cognizer.

One can now see that our definition of discrete representation is not too weak.  It does precisely
the work that needs to be done in accordance with our claim about types of representation.  It draws
distinctions where they need to be drawn and it strongly highlights the importance of discrete
representations in categorization and discrimination.  Finally, our result is surprising: we have a shown, we
believe, a necessary connection between mental capacities for discrimination and possessing discrete
representations.
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and representational elements in the system.  Models incorporating discrete representations have

posited connections that permit the spread of activation in semantic memory, and they have also

suggested role-argument connections that bind discrete representations.

2.3.  The Watt governor and the thermostat

A good way to illustrate the distinction between discrete representations and continuous ones is

by contrasting the Watt steam engine governor and the standard thermostat.  This device is

designed to keep flywheels of steam engines rotating at a constant speed.  The governor consists

of a spindle with two arms attached to it, and on the end of each arm is a metal ball (see Figure 1).

The governor is connected to the flywheel, usually via a pulley.  The faster the flywheel rotates,

the faster the governor rotates.  As the governor rotates faster, the balls rise, due to centrifugal

force.  There is also a mechanical linkage between the rising and falling arms and a valve on a

steam pipe that controls the amount of steam driving the flywheel.  As the engine runs faster, the

rising balls, via the linkage, cause the valve to close.  The restricted valve decreases the amount of

steam driving the flywheel, so it slows down, which in turn causes the governor to spin more

slowly.  The slower spinning balls drop, opening the valve, which causes more steam to flow,

which causes the flywheel to accelerate, etc.  In this way, a relatively constant speed for the

flywheel can be maintained.

The arm angles are continuous representations of the speed of the flywheel, the speed of

the piston in the steam engine, the amount of the steam flowing through the valve, etc.
7  

 The

process by which the governor controls the steam pressure in the engine is called equilibration

because it maintains equilibrium in the steam engine via a tight feedback loop.  Equilibration can

be described as a path in a dynamic system's phase space, usually as a cycle around an attractor.

Notice, the governor at no time discriminates between arm angles, nor between different degrees

                                                  
7 The Watt governor has been touted as a feedback system that works without representations at all (Van
Gelder, 1995, Thelen and Smith, 1994), but this claim has been shown to be wrong (Bechtel, 1998).  The
arm angles of the governor are representations, in fact, continuous representations.  Note that the governor
can misrepresent -- it can be fooled -- by artificially increasing or decreasing the amount of steam driving
the flywheel, or by artificially increasing or decreasing the speed of the flywheel itself.
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of how open the valve is on the steam pipe.  The beauty of this device is that it maintains

pressure equilibrium without having to discriminate.  As the pressure continuously increases or

decreases, the governor changes speed thereby continuously opening and closing the valve to

which it is connected.

The Watt governor with its continuous representation can be contrasted with a

thermostat, which uses both continuous and discrete representations.  As shown in Figure 2, a

thermostat usually has a curved bimetal strip.  The strip  changes its degree of curvature with

temperature, because the two metals expand at different rates.  If the faster expanding metal is

placed on the outside of the curve, then when the temperature rises, the thermostat increases its

curvature (because the outside metal expands faster than the inside one).  The degree of

curvature of the bimetal strip is a representation of temperature.

In order to affect the temperature of a room, the bimetal strip has a vial at the end of it

that is filled with mercury (or some other conducting liquid).  The vial has electrical contacts on

each end (shown as dark circles on the vial).  When the bimetal strip is highly curved (as in the

example in Figure 2), the conducting liquid is pooled at the end of the vial, and the electrical

circuit (which controls the heater) is open.  When the strip is less curved (representing a cooler

temperature), the vial is oriented so that the liquid closes the contacts, turning on the heater.

Thus, the vial has two discrete representational states.  The continuously varying information in

the bimetal strip has been converted into an on and an off position.

It is important to notice that the thermostat uses continuous change and continuous

representations, but this continuity is strictly inessential to controlling the air temperature.  In the

thermostat, the discrete representations are crucial to the functioning of the system.  That is,

discrete representations (when they exist) can supervene on continuous representations.

(Properties of type A supervene on properties of type B if any two possible situations identical

with respect to their B properties are also identical with respect to their A properties.)  In the

thermostat, the discrete representations are crucial to explaining the discriminating behavior of
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the system.  The bimetal strip in the thermostat continuously varies as a result of continuous

changes in the air temperature.  The amount of bending in the strip continuously represents the

air temperature.  It is only when the strip has bent far enough to close the circuit, however, that

the bending matters.  A digital thermometer would work just as well. This device would sample

the air temperature every so often (time would have to be measured discretely, perhaps by

counting vibrations of something), and then compare the measured temperature against a

previous set temperature.  When the measured temperature fell below the set one, this

thermometer would turn on the heater.  Hence, though certain components of a standard

thermostat are subject to continuous change, this continuity is at most only pragmatically

responsible for the functioning of the thermostat.  Thus, just because a system uses continuous

representations doesn't mean that those representations (or any other continuous

representations) are crucial to the functioning of the system.

To summarize, a system has discrete representations if and only if it is able to use those

representations to discriminate at least two distinct conditions in its input (typically system

input), and categorize those inputs accordingly.  A continuous representation is a single

continuous quantity.  Continuous representations derive most of their content from their

correspondence to the system input.  In contrast, discrete representations typically get an

important part of their content from functional role relations to other representations in the

system.  Finally, a system that has discrete representations may also have some continuous

representations in it (for more complex organisms, this is probably the typical case).  In this case,

the discrete representations may supervene on its continuous ones.

3.  Why cognition requires discrete representations.

In this section, we give seven arguments that cognition requires discrete representations. These

arguments, summarized in Table 1, are organized around two themes.  Arguments 1-4 focus on

the importance of discrimination in cognitive systems and on the importance of having discrete
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units as components of cognitive representations.  Arguments 5-7 focus on the relative

contribution of correspondence and functional role in providing content in mental

representations.  These arguments turn on the fact that functional role is a more important source

of content for discrete representations than for continuous representations.

3.1.  Arguments based on discrimination.

The first argument for discrete representations is simply the observation that cognitive systems

do in fact discriminate among states in the world.  Cognitive agents reason and judge (that is

why cognitive science posited representations in the first place).  Agents reason and make

judgments about individual items in their environment.  Individual items are selected out of the

environment by discriminating them from their surround.  Hence cognitive systems have to

discriminate.  As discussed above, however, it is not possible to discriminate among states using

a continuous representation.  Because it co-varies in a time-dependent fashion with its input, a

continuous representation treats the entire input stream as a unified whole that varies

continuously.  Hence, it can't sunder the represented input into two or more states.  The time-

dependent nature of continuous representations is often touted as a virtue (e.g., van Gelder &

Port, 1995), but in fact, it prevents continuous representations from being able to discriminate

among states.  In short, coupling, the very thing that makes continuous representations useful,

also prevents them from being able to discriminate, and hence categorize.

Another way to put this argument is to note that cognitive systems need to be able to

refer to individual entities  or items in their environment (for example, in order to avoid

predators, find mates, find food, and to communicate with others).  Reference requires

discrimination, and thus it requires discrete representations.

We are not saying that continuous systems cannot act differently in different

circumstances.  They can.  The physical law that relates input to the continuous representation

will typically be nonlinear and give very different outputs as a function of the value of the

relevant quantity in the input.  But acting differently in different situations is not the same as
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discriminating between two situations.  The thermostat's bimetal strip behaves one way when the

air temperature is increasing and another when the air temperature is decreasing, but it is not

thereby discriminating between the two situations; only the binary, mercury switch can do that.

And that switch has discrete states.

The second argument parallels the idea that cognitive systems need to be able to refer to

individual entities in the world.  Cognitive systems also need to be able to pick out specific

properties of represented items, properties like 'has wheels' and 'has a gas-powered engine'.

Doing this requires discrete representations.

To see this, consider, for example, that people are good at accessing the commonalities

and differences that emerge from comparisons.  However, continuous representations are unable

to provide access to specific commonalities and differences.  Spaces are commonly used as

continuous representations in cognitive science.  The use of a space as a representation is

supported by techniques like multidimensional scaling (Shepard, 1962) and also by techniques

for creating high-dimensional semantic spaces from corpora of text (Burgess & Lund, 1997, 2000;

Landauer & Dumais, 1997).  In these models, concepts are represented as points or vectors in

space.  Comparisons of pairs of concepts involves finding the distance between points or vectors.

The output of these comparisons is a scalar measure of similarity.  But scalar distances between

concepts clearly are not the same thing as the commonalities and differences between the

concepts.  To get these, one needs to treat concepts as composed of discrete subparts that are

recoverable during comparisons and which allow discrimination between properties.

Many comparisons require more than an overall measure of similarity.  For example,

Landauer & Dumais (1997) demonstrated that a model generated by finding proximities among

words in a large corpus of text was able to perform a synonyms test (the Test of English as a

Foreign Language (TOEFL)) at a level equivalent to that of a non-native speaker of English by

taking the vector for the target word, and then finding the choice item that was most similar to

the target.  This model could not perform an antonyms test, however, because antonyms are also
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highly similar words.  Finding antonyms requires aligning the representations of a pair, finding a

salient dimension of difference, and ensuring that the items have the opposite value on that

dimension.  Thus, finding antonyms requires accessing the commonalities and differences of a

pair, which cannot be done with a continuous representation (see Markman, 1999, and Medin,

Goldstone, & Markman, 1995, for more discussion of this point).

Research on structural alignment in similarity comparisons also demonstrates the way

people access commonalities and differences of similarity comparisons (Gentner & Markman,

1997).   For example, when people are asked to list the commonalities and differences of pairs of

similar words or pictures, they are able to list many commonalities and also many differences

related to those commonalities, called alignable differences (Markman & Gentner, 1993, 1996).

When people list the commonalities and differences of dissimilar pairs, they are able to list few

commonalities and alignable differences.  The ability to access commonalities and differences,

indeed, the ability to make all sorts of complex, robust comparisons between concepts, is

incompatible with spatial representations (and continuous representations in general).

The third argument builds on the second.  Not only do cognitive systems compare

concepts (and representations of all sorts), but they often need to combine them too.  By 'combine'

we mean that information in one representation is joined with another.  For example,

representations are combined in the process of concept formation.  Concepts are constructed from

lower level representations of nonidentical instances.  To learn the concept apple, for example,

one builds it out of representations of the apples one comes into contact with.  Representation

combination is also done in a variety of other cognitive processes such as analogical reasoning

and reminding.  Even animals without a symbolic, natural language need to combine

representations from time to time because, of course, they form concepts.

Combining information isn't possible unless one uses discrete representations.  Basically,

when continuous representations are combined, all that results is another continuous
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representation where all the original information is lost due to blurring.  We illuminate this point

with a tiny portion of the history of genetics.

Following the rediscovery in 1900 of Gregor Mendel’s work on genetics, Darwin’s theory

of evolution via natural selection (first published in 1859) should have been immediately

accepted, for Mendel’s theory solved a long-standing problem about inheritance.
8 

 During

Darwin’s lifetime, the mechanisms of inheritance were poorly understood.  The going theory,

embraced by Darwin, was that inheritance worked by a sort of blending of whatever it was that

was responsible for offspring having the coloring, form, and other properties that they do.  This

was called blending inheritance.  The theory of blending inheritance assumed that the stuff

responsible for inheritance was an infinitely divisible, continuous fluid, perhaps even blood.  In

1867, Fleeming Jenkin, a Scottish engineer, raised an objection to Darwin’s theory of natural

selection by pointing out that such blending inheritance would, in a very short time, result in a

completely homogeneous population, and that natural selection would then have nothing to

work on.  For example, mixing many different colors of paint in a pail quickly leads to a darkish

gray sludge from which the original colors cannot be extracted.  Of course, strictly speaking,

Jenkin’s objection was only a reductio on the blending theory, but this theory was considered so

much a part of Darwin's theory of natural selection, that any trouble for the blending theory was

transferred to the Darwin's theory, too.

In spite of Jenkin's objection, the theory of blending inheritance remained, mainly

because there was no obvious replacement.  Ironically, Mendel's particulate theory of inheritance,

which would turn out to be the rebuttal to Jenkin’s objection, was published at about the same

time as Jenkin’s objection.  Mendel's work was completely ignored until 1900.

                                                  
8  We say Darwin's theory should have been accepted, but it was not.  For many years, it was believed that
Mendel's genetic theory and Darwin's theory of natural selection were in competition.  Indeed, most viewed
Darwin's theory as losing the battle.  Then in the 1930s, R. A. Fisher, J. B. S. Haldane, and Sewell Wright
showed that not only were Mendelian genetics and natural selection compatible, they needed one another:
indeed, genetics offered a partial reductive explanation of evolution via natural selection.
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Mendel's first law, or the law of segregation, states that hereditary characteristics are

determined by a finite number of discrete particles in the cells of organisms, and passed on to

future generations in the germ cells of organisms.  (These particles are now known as genes.

Mendel knew nothing of genes as we know them, nor did he know anything about

chromosomes, mitosis, or meiosis, all of which were discovered after Mendel.)  Mendel

determined that it is the relative frequency of these particles that are either present or not that

matters in inherited characteristics.  Tall pea plants when cross-mated with short pea plants

produce all tall plants in the first generation.  However, individuals of this first filial generation,

when mated with each other, produce, in the second filial generation, tall and short pea plants at

a ratio of about 3:1.  The particles responsible for shortness are still present in the first filial

generation, but somehow just not active (this phenomenon is called 'dominance').  It is clear, as it

was to Mendel, that mating in no way dilutes or alters what is responsible for height.  Mendel

generalized this to all inherited characteristics.  He then reasoned that the only way this can

happen is if discrete particles are responsible for inheritance.

Some traits do appear to blend.  For example, the colors of white and red four-o'clocks

seem to blend to produce pink flowers.  But, if the pink flowers are mated with each other, red,

white, and pink flowers are produced, indicating that the particles for red and white are still

present— undiluted and unaltered—in the pink flowers.  The pink color, it is now known, is due

to a phenomenon called 'incomplete dominance.'  There is no blending going on.

The crucial property of genes that solved the problem of inheritance plaguing the theory

of evolution was that genes are discrete.  Each gene carries a fixed amount of information for

constructing some protein.  And, that information has to be discrete if it is to be combined,

recovered, and used over and over again to do the job it is supposed to do.  Further, the

operations that are carried out on genes are discrete operations of the sort computational systems

perform.  For example, genes are copied and interpreted (to build proteins).
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Thus, it turns out that nature has solved the problem of combining information at least

once before.
9 

 Discrete genes were needed for a deep reason: only discrete genes can be combined

in such a way that new organisms are produced which are different enough for natural selection

to have something to operate on, but are alike enough to be able to successfully mate and

producing viable offspring.  (This way of putting the point is anthropomorphic, but not

dangerously so.
10

)

We think the analogy between the genetic case and the cognitive case is quite robust.

Discrete representations are also needed for a deep reason: only discrete (cognitive)

representations can be combined in such a way that cognitive processes have different thoughts

to operate on, but where the thoughts are similar enough to insure the coherence required for

rationality.

There is another, short variant to this argument.  It is well-known that concepts combine.

The concept brown and the concept cow can combine to form brown cow.  The concepts snow

and bicycle can combine to form snow bicycle (whatever that might be) (see Smith & Osherson,

1984, and Wisniewski, 1997, for discussions of the psychology of conceptual combination).  Yet,

the original concepts once combined, are nevertheless recoverable.  If concepts are represented in

some continuous, fluid substrate then this ought not to be possible.  When fluids combine, the

original constituent fluids are lost, and recovering them is impossible (or at least very difficult).

The fact that constituent concepts are easy to extract from combinations suggests that they do not

combine in the manner that fluids do.  Just as the blending theory of inheritance foundered on its

prediction that heritable properties would lose their distinctiveness through blending (which did

not occur), so too the view that most cognition (including higher cognition) is based on

                                                  
9  And we are not the first to make the point that natural selection requires discretely represented
information.  Dawkins makes this point also.  See his 1987, p. 115.

10  Some readers have questioned whether or not genes are really viewed as discrete in modern biology.
The answer is: usually.  Sometimes biologist do think of genes as dynamic, continuous structures, but this
is only in special circumstances.  In all the standard cases, genes are viewed as discrete entities.
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continuous representations founders on its difficulty in explaining how concepts combine while

keeping the constituents extractable.
11

The fourth argument turns on the fact that role-argument structures appear to be

important for many cognitive processes in order to enable them to combine efficiently (Fodor &

Pylyshyn, 1988; Markman, 1999; Norman & Rumelhart, 1975).  Representations of complex

entities, say, a coffee cup, are made up of simpler elements in specific relations.  So, a

representation is structured if and only if it is composed of parts; nothing that is homogenous is

structured, and vice versa.  One way of writing out structured representations is using predicate

calculus notation with predicates that take arguments, for example:

cause [ love (John, Mary), kiss (John, Mary) ]

Continuous representations typically are not homogenous, yet they do not have parts.

Continuous representations have regions that grade smoothly (even if sometimes rapidly) into

one another.  Regions aren't parts, because they cannot be extracted from the representation and

replaced with other parts.  Potentially, some other representation system could describe the

regions of a continuous representation as parts, but that would require a discrete representational

system that supervenes on the continuous representation.  For example, in the thermostat

example, the discrete representation (i.e., the mercury vial) supervenes on the continuous one

(the bimetal strip).

                                                  

11  It might be objected that one's concepts brown and cow do not in fact combine, but rather that copies of
them combine, and once these copies combine they do lose their ability to be uncombined or extracted.
This objection doesn't work.  In the first place, there is no evidence that concepts are copied for any
purpose.  Secondly, there is no evidence that copies of concepts are the ones used in combining concepts.
Concept composition is an important cognitive process, but it doesn't appear to work only on copies.  In
most cases of conceptual change, the change appears to be permanent, which wouldn't happen if the change
happened to copies (Dietrich and Markman, 2000b).  Further support for the use of original concepts in
combination comes from research on analogy.  There is now rather good evidence that when two concepts
interact to produce an analogy, the two concepts are changed somewhat (see Dietrich, 2000, and Gentner
and Wolff, 2000).  Most of the large changes happen after the analogy is made , and they clearly happen to
the original concepts, since after the analogy, inferences made from those concepts take into account the
information transferred in the analogy.
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The curve in Figure 3 can be used to illustrate this point.  Assume this curve describes the

behavior of a continuous representational subsystem R.  The graph can be construed as having

two regions: ray A and ray B, related by a smooth transition, curve S, between them.  So of course

R  can be construed the same way.  In order to construe R in this way, another representational

system (call it T) is required that takes the behavior of R as input and yields as output discrete

representations whenever it (T) determines that R is in the regions defined by ray A, ray B.  If T

also construes the region S as the relation between rays A and B, then we can imagine T creating

a structured representation derived from R.  If T represents S with the symbol Σ, and ray A and

ray B as the symbols 0 and 1 respectively, then T can yield a tree of the form (Σ 0 1) as a construal

of R.  In this example, a structured representation is constructed from parts associated with the

relevant regions of R, but R itself does not have parts and hence is not structured.  Therefore, if a

representation is structured it has discrete parts, and those parts are discrete representations.

3.2.  Arguments based on functional role

Arguments 5-7 focus on the relative contribution of correspondence and functional role in

continuous and discrete representations.  The fifth argument is based on the observation that

humans are able to identify and use thousands of concepts that are tightly interconnected.  Such

connections define the functional roles of the various representations.  But, the representations

connected in this way have to be discrete.  It is meaningless to talk about connecting a

nondiscrete, continuous whole.  Only discrete representations can have functional roles with

respect to each other.  Since there is significant evidence that people's concepts are highly

interconnected and that concepts derive their meanings in part from these connections, it must be

that the concepts are discrete.

The observation that people's categories are organized into hierarchies leads to the same

conclusion.  For example, the same object can be categorized as a station wagon, car and a vehicle

(Brown, 1958; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976).   People recognize the
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semantic relationships among categories.  They are also able to use these levels of categorization

flexibly, although they tend to treat the middle level of abstraction (e.g., car) as cognitively

privileged.  It is difficult to see how people could keep these various levels of abstraction distinct

using only a continuous representation, particularly one that shows little influence of connections

among concepts.  Hence, the basic facts of conceptual organization argue strongly for discrete

representations.

The sixth argument begins by noting that we are capable of thinking so efficiently about

so many things in our world because the mind is able to abstract from its environment.  We don't

have to have a concept for each individual table we have come across in our lives; we can instead

group them all under the concept 'table.'  Continuous representations are not abstract however.

They are typically highly specific, because they correspond to some specific continuously varying

input .  In contrast, discrete representations are often abstract.  In fact, creating abstractions

produces discrete representations.

 Not much is known about how concepts are constructed from the input we receive,

indeed there is little agreement even on the best way to define concepts.  There is general

agreement, however, that concepts are abstractions.  That is, they abstract away from information

in the environment.  It is this property that enables concepts to allow the cognitive system to treat

discriminably different items as equivalent.  Of course, the abstraction process is not well

understood either, but there is general agreement that abstractions leave out information from

the environment.  Given just these agreed-upon facts, abstraction must involve (at least) the

following steps:

Step 1.  Information (e.g., sound waves) is received continuously from the agent's

environment.

Step 2.  At the initial stages of processing, continuous representations encode this

information.  Information about the physical stimulus (e.g., the sound

wave) is lost when the representation is not sensitive to that information.
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For example, the human auditory system loses information about high-

pitched sounds, though the canine auditory system does not.

Step 3.  Information is extracted (by various other systems) from these continuous

representations to produce representations at higher levels, e.g., the

representations of words.  This extracted information is not simply lifted

out of the continuous representations like extracting a cupful of water

from a mountain stream.  Rather, the extraction process abstracts from the

information in the continuous representations. This abstracted

information leaves out details from the continuous representations.

Hence, as higher representations are produced, additional information is

lost.  Losing information  by interrupting  a continuous stream produces a

set of unconnected representations.  These representations are used to

discriminate conditions in the environment (e.g., to chunk a soundwave

into words).  Hence, abstraction produces discrete representations.

Another way to put this picture of the role of abstraction is to say that the benefit of

losing information from continuous representations is the production of a set of discriminating,

potentially referring, discrete representations that are combinable.  And finally, the reason

argument six is included under the functional role category is that abstractions have to get a

significant part of their semantics from functional role.  Because abstractions are not tightly

connected to information in the environment, they cannot get much semantics from

environmental information.  Functional role is all that is left.

Now we are ready for our seventh and final argument.  For some representations, the

connections between them and what they represent can be described by physical laws.  The arm

angles in the Watt governor are connected to how open the steam valve is, the speed of the

flywheel, etc.  This connection can be described by a set of differential equations.  We call these

representations nomic.  (We will also use this term when talking about the descriptions as well as

the connections themselves.)  Not all representations are nomic; some are nonnomic.  A
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nonnomic representation is one where there is no physical law governing or describing the

relation between the representation and what it represents.  A representation (concept) of a worn-

out climbing rope is an example of nonnomic representation.  There are no physical laws

governing the relation between having that representation and the climbing rope (c.f. Fodor,

1986).

Nonnomic representations are extremely useful.  It is important to be able to think about

things where the representation and what is represented are not connected by a law of physics.

Indeed, most human concepts (as opposed to sensations) involve representational relations that

are not physical laws.  Hence, almost all higher-level cognitive representations are nonnomic.

Claim: only discrete representations are nonnomic.

This claim can be proven by contradiction, by considering whether there could be

nonnomic continuous representations.

For all continuous representations, it is their co-variation with something in the input

stream that makes them the representations that they are; their variations are how the

representation's content is manifested or made explicit.  Furthermore, as noted previously, the

crucial aspect of continuous representations is that they are coupled to what they represent.

Indeed this coupling is what the relevant physical law describes.  Coupling guarantees that the

variations in a continuous representation vary in accordance with the representation's

precipitating conditions.  If there was a continuous representation that was nonnomic, then it

could vary independently of the conditions in the input to which it is supposedly coupled.

Hence it wouldn't represent anything, and so it would not be a representation.  Thus, there can't

be any nonnomic continuous representations.  Hence all nonnomic representations must be

discrete.
12

                                                  
12 Fodor (1986) argues that no system with only nomic internal states has mental representations.  Hence
for Fodor, nomic internal states are not mental representations (even in humans).  Whether this position is
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As this argument demonstrates, the correspondence part of the semantics of a continuous

representation is sufficient for its activation.  Thus, a physical law can govern the activity of a

continuous representation because the presence of something in the environment (i.e., external to

the system) is sufficient to activate the corresponding (continuous) representation.

In contrast, discrete representations are activated both by the presence of information in

the environment, and also by their functional connections to other representational elements.  For

example, within a semantic network, a representation is activated as a result of the spread of

activation from neighboring concepts.  This functional role source of activation is governed by

psychological factors, not physical ones.  Thus, discrete representations have a source of

activation that is not present for continuous representations.

4.  Conclusions.

We have established that cognition requires discrete representations.  This conclusion is based on

the above seven arguments (summarized in Table 1).  These arguments center around two main

properties of discrete representations.  First, discrete representations permit a system to

discriminate among states in the environment, but continuous representations do not.  Second,

discrete representations allow a greater influence of functional role information than do

continuous representations.

Accepting that discrete representations are central to cognitive processing has an

interesting consequence.  It follows from the presence of discrete representations in cognitive

                                                                                                                                                      
compatible with our own depends on what 'mental' means.  A restricted definition applying only to higher-
level cognition is fine, for then the nomic representations, while crucial to cognition are not themselves
representations used by higher-level cognitive processes.  A broader definition of 'mental' that covers all of
cognition and the states on which cognition depends, is not compatible with our view.  Unfortunately,
Fodor does not make clear what he means by a mental representation.
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processing that computationalism is the best paradigm for cognitive science.  The argument for

this point is relatively straightforward; it proceeds in two steps.  Any system that uses discrete

representations, is finite, and has deterministic transitions between the states can be rendered as

an algorithm.  We have argued that the mind uses discrete representation, and the mind is clearly

finite (it stores only a finite amount of information, and it works at a finite speed).  It is also

plausible that the mind is deterministic (it's high variability due to the fact that its inputs are

never exactly the same).  Thus, the mind can be described as a computational system
13

.

 So far, the argument has been apodictic.  The second step, unfortunately, is not; it is a

methodological variant of inference to the best explanation.  Because the mind can be described

as a computational system and because we understand computational systems rather well (but

not completely), it follows (with some force) that computation is an extremely useful paradigm

for theorizing about the mind, for theorizing about thinking.   We ought to use the best, most

powerful, explanatory paradigm we have available.  Right now, that is computationalism.

Hence, until something better comes along (and we don't anything will) computationalism ought

to be the paradigm of choice among cognitive scientists.

Why have explanations of cognitive capacities proved so elusive if the field has found the

proper paradigm?  One important reason that many computationally-based explanations have

fallen short is that these explanations often do not use true representations.  As discussed above,

in order to be a representation, there must be a set of internal states that bears some informational

relationship to some input.  In most computational models, however, the 'representations' are

created by the user.  These data structures have a user semantics because only the user knows

what they mean.  The model itself is given empty symbols (see also Bickhard & Terveen, 1995).

The field of situated action (sometimes called embodied cognition) has explicitly

recognized this limitation in many models (Brooks, 1999; Clancey, 1997; Pfeifer & Scheier, 1999;

Suchman, 1987).  This approach criticizes mainstream research in cognitive science for failing to

                                                  
13  Thanks to Dave Chalmers for discussion of this first step of the argument.
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attend to the connection between the system and its environment.  This research demonstrates

that some problems that are quite difficult to solve using abstract representations can be greatly

eased by taking the environment into account.  For example, Pfeifer and Scheier (1999) describe a

robot that classifies cylinders as large or small.  The robot does not have a sophisticated visual

system.  Instead, it has simple procedures for wall following that enable it to circle around the

cylinders.  It also has sensors that detect the speed of its wheels.  The ratio of the speed of the

outer wheel to the speed of the inner wheel is larger for small cylinders than it is for large ones.

By attending to this aspect of the environment, the robot is able to classify the cylinders

successfully.

In many cases, it is possible to make claims about what can be computed with a

representation simply by knowing the form of the representation.  For example, Tversky (1977)

demonstrated that models using spatial representations were not capable of accounting for

patterns of human similarity judgments by demonstrating systematic violations of the metric

axioms that define a space.  On the basis of these computational concerns, it was reasonable to

call the use of spatial representations into question (although Krumhansl, 1978, and Nosofsky,

1986, were able to extend the assumptions of spatial models to account for many violations of the

metric axioms).

It is more difficult to argue for the sufficiency of a set of representational assumptions

without taking into account how the representations come to have content.  For example, the

classic past tense learning model of Rumelhart and McClelland (1986) learned to associate an

input pattern that could be interpreted (by the user) as representing the present tense form of a

word with another pattern that could be interpreted as the past tense form of the same word.

Many critiques of this model were generated that focused on the capacities of distributed

representations (Fodor & Pylyshyn, 1988; Lachter & Bever, 1988).  A significant limitation of this

model, however, is that the representations were not sufficient to perform any linguistic

operations, nor did the input to the model actually represent the words (see also Pinker &



Discrete Representations 31

31

Prince,1988).  We do not mean to pick on this model specifically.  It is simply a convenient

example of a widespread problem in cognitive modeling.

There are a number of alternative approaches to modeling that can be adopted.

Advocates of situated action argue that modeling can only be done with systems (or pseudo-

agents -- since such 'agents' don't, in fact, think) that have sensors and effectors tied to the

environment.  While this approach is fruitful, we believe that cognitive modeling can be done

without first modeling perceptual and motor processes.  One promising approach is to perform

large-scale cognitive simulations and to use the same sets of representational assumptions across

many models.  For example, Forbus (2001) argues that computational models of analogical

reasoning must be tested across many large problems rather than making isolated

representational and processing assumptions for each individual situation.  This approach

deserves further exploration.

Finally, we believe the distinction between continuous and discrete representations is a

case study for the importance of representational (and to that extent, an explanatory) pluralism in

cognitive science.  By advocating a paradigm shift, researchers using dynamic systems are

implicitly assuming that there is only a single type of representation that is used by the mind

(e.g., Thelen & Smith, 1994; van Gelder, 1998).  What the discussion in this paper demonstrates is

that discrete representations are necessary for cognitive processing.   This is not an argument

against the use of continuous representations.  Indeed, in cases where internal states need to vary

continuously with some quantity in the world (such as in the steam engine governor or the

bimetal strip in a thermostat) continuous representations are quite useful.  It is unlikely that a

device as complicated as the mind uses only one type of representation (see Markman, 1999, and

Markman & Dietrich, 2000b, for further discussion of this point).

In conclusion, cognitive science need not find a new paradigm.  Computationalism is not

only a reasonable approach to the study of mind, it is the best one.  While cognitive scientists can

take heart that they are operating within the right framework, some concessions must be made.
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In particular, there are three ways that we as cognitive scientists must change the way we use

representation.  First, we must recognize that there will be many types of representations in

cognitive systems, and should not take evidence of the sufficiency of a set of representational

assumptions for one type of cognitive phenomenon as a demonstration that these

representational assumptions are valid for all cognitive phenomena.  Second, in order to balance

this explanatory pluralism and to avoid generating a model for each individual task, we must

make an effort to unify our representational assumptions across models in order to create

representations that are sufficient to carry out the range of cognitive processes for which the

representations have been posited.  Finally, we must make an effort to use representations that

actually represent, as opposed to representations that have only a user semantics.  By following

these guidelines, cognitive science will be poised to make headway on the difficult problems that

remain to be solved.
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Table 1.  Seven arguments that cognitive systems require some discrete representations.

1.  Cognitive systems must discriminate among states in the represented world.

2.  Cognitive systems are able to access specific properties of representations.

3.  Cognitive systems must be able to combine representations.

4.  Cognitive systems must have some compositional structure.

5.  There are strong functional role connections among concepts in cognitive systems.

6.  Cognitive systems contain abstractions.

7.  Cognitive systems require some non-nomic representations.
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Figure 1.  The Watt steam engine governor
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Figure 2.  A diagram of a simple thermostat.
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Figure 3.  A continuous representation offered as

an objection to the claim that only discrete

representations can discriminate environmental

conditions.  Time moves from left to right.




