
1

EDITORIAL

Subvert the Dominant Paradigm!

A Review of

Computationalism: New Directions

Edited by Matthias Scheutz, The MIT Press, 2002.

Jerry DeJohn and Eric Dietrich

Dept. of Philosophy

Binghamton University

Binghamton, New York

jdejohn@stny.rr.com, dietrich@binghamton.edu

Abstract:

We again press the case for computationalism by considering the latest in ill-

conceived attacks on this foundational idea. We briefly but clearly define and

delimit computationalism and then consider three authors from a new anti-

computationalist collection.

I. The Rebel Yell

Many a rebel youth, denouncing some state of the world, has cried "Subvert the

Dominant Paradigm!" Unfortunately, few of their number target paradigms that actually

need subverting. Some rebels are doing good work, but in these latter days, many merely

2

wear "Rage Against the Machine" t-shirts and sport bumper stickers that read "Kill your

TV" . . . and, of course, "Subvert the Dominant Paradigm." When encountered at parties,

such "rebel's" never pass up a chance to wax philosophical about the oppressiveness and

incompetence of the existing dominant “thought structures” that form the fabric of our

daily existence. If one has the persistence and constitution to ride out one of their

diatribes, one usually finds they are attacking the dominant paradigm not because they

have correctly identified it as the source of their problems, but because the dominant

structure is an easy target for their frustrations. Why subvert the dominant paradigm?

Because it is there (to borrow Mallory’s phrase), and it presents a much more enticing

target than the more elusive prey that is usually the true source of their discontent.

This is exactly the situation with respect to computationalism: the hypothesis that

cognition is the execution of Turing-computable functions, and the book under review:

cognitive scientists have a tremendously useful paradigm that should not be subverted,

but it is being attacked by a bunch of Rage-Against-the-Machine-wearing "rebel's," who,

for want of something better to do, are out to subvert the dominant paradigm.

A grand, unified theory of cognition, at a minimum, would comprise theories of

perception, the various kinds of memory, concepts, conceptual semantics, reference,

emotion’s role in cognition, as well as a theory of representation together with a theory of

representational semantics, along with, of course, a specification of the functions actually

responsible for cognition (one might rationally require theories of intentionality and

consciousness to be added to the brew). This is an enormous list of needed theories. Far

3

larger than anywhere else in science. What are the dominant theories of, e.g., perception,

concepts, semantics, representations, or intentionality that has guided cognitive science?

There are none. We simply do not have anything close to a well-developed theory of

these components of cognition. This lack of robust theories is frequently interpreted as a

failure for cognitive science (it is not a failure, of course, cognition and associated other

mental phenomena are among the most complicated in all of nature). And this alleged

failure is laid at the feet of computationalism. When "theoreticians" (philosophers,

mostly) wish to indict something for the "failures" of cognitive science, they descend on

computationalism precisely because it is the only component of a unified theory that is

robust enough to attack. This explains the collection of essays in Computationalism:

New Directions.

II. What computationalism is and isn't.

Computationalism is the hypothesis that cognition is best explained as algorithmic

execution of Turing-computable functions. (Computationalism exclusively focuses on

cognition. It does not say, at least at this stage, that emotions or consciousness or any of

the other many mental phenomenon are Turing computable.) Such explanations have

three properties: they explain cognitive capacities, they are systematic; and they are

interpretive.

4

Computational explanations explain capacities or abilities of a system to

exhibit certain behavior. Hence, computational explanations differ from

more well-known causal explanations in sciences such as physics which

subsume behavior under a causal law.

Computational explanations are systematic. For any system of reasonable

complexity (say, anything from an arthropod on up), computational

explanations posit interdependent functions that interact to produce the

output from the input. Given a system, a computational explanation

analyzes the system-sized function, which explains the system's gross

behavior, into subfunctions and then shows how those subfunctions

interact to produce the system's behavior.

Computational explanations are interpretive. In order to explain some bit

of behavior as computing function F, say, we must be able to interpret the

initial state of the system as being the requisite input for F, the final state

of the system ("final" in a teleological sense) as being the requisite output

of F, and all of the system's intermediate states as being the subfunctions

of F.

This last property has been misunderstood by some, even by computationalists

(e.g., Chalmers, 1994). It's important to get the order of events right. We don't want to

show how a computation is implemented in some system (contra Chalmers). Precisely

5

the opposite: we want to show how some system implements a computation. This

change of order is quite important. As cognitive scientists, we don’t pick a computation,

and then look for a system that implements it. Rather, we want to explain how some

system does what it does by interpreting it as executing some computation. We begin

with a physical system’s behavior and look for what explains it, where the explanans are

computations performed over representations. To the computationalist, as with any

scientist, it is a system's behavior that is central. Interestingly, this is true even in

artificial intelligence. True, in AI we do implement computer programs, but the point of

the program is that it explains the behavior of the machine, which in turn is used to model

some aspect of intelligent behavior. This point can be readily observed when one

considers scientific AI, rather than engineering AI (for two examples, see MAC/FAC,

Forbus, et al.(1995), and LISA (Hummel & Holyoak, 1997). (Chalmers would probably

agree that explanation grounds the use of computations, at least in part. But in his

writings, this point gets lost. He seems more interested in the abstract computation and

its implementation, rather than the physical system and its explanation, which goes

precisely the opposite direction. We darkly suspect that Chalmers is more interested in

metaphysics than is your typical cognitive scientist working in the field.)

The above is all the hypothesis says. It would seem to be hard to get it wrong.

Yet, here are three common misunderstandings of computationalism. First, the

computational hypothesis is only a foundational, abstract hypothesis (we will have more

to say about this, below, when we discuss some essays from the book). All the

hypothesis gives us is a framework within which to work. It does not get specific about

6

which particular functions cognition is. Therefore, the hypothesis does not tell us what

models to build, nor which experiments to run. The computational hypothesis is not a

theory of mind.

Secondly, the hypothesis is not committed to mental representations of any

particular variety. Rather, it is compatible with a myriad of different kinds of

representations from mental spaces to numerical quantities to nodes in a semantic

network. Together, these two points mean that the hypothesis leaves all the hard work to

do. We still need to roll up our sleeves and get down to the difficult business of

developing a theory of mind.

A third misunderstanding is to equate it with "computerism". Computerism is the

view that the architectures which allow for cognition are structured like a von Neumann

machine, i.e. a digital, serial computer. Computationalism is completely agnostic as to

whether the specified functions, which are invoked to explain some systems behavior,

will be implemented on a classical von Neumann architecture, or on a massively parallel

distributed processor, or a continuous processor, or on something that we haven’t

imagined yet (it is extremely unlikely that von Neumann machines are up to the task).

All that the hypothesis insists upon is that the specified functions be Turing-computable.

(For more on computationalism, see Dietrich and Markman, 2000, and Dietrich,1990a.)

Even though the hypothesis is broad and general, this in itself doesn’t mean that it

is vacuous or unfalsifiable. Much to the contrary. Computationalism is a robust

7

framework that could be unambiguously proven false. This could occur in at least two

ways. First, a cognitive system could be shown to execute a non-Turing-computable

function, or secondly, a cognitive system could be found to routinely and quickly solve

arbitrarily large instances of the traveling salesman problem (i.e. NP-complete problems).

Either option would be bad news for computationalism (the latter because it would mean

that our understanding of the class NP would be lacking something crucial, and the class

NP and theory of computation are intimately tied up with each other), but, until the day

that such revelations are forthcoming, computationalism remains the best framework

within which to do cognitive science.

III. Computationalism and its Discontents

To keep things somewhat short, we review three essays (out of seven) from

Computationalism: New Directions.

Brian Cantwell Smith

Brian Cantwell Smith doesn't attack computationalism head on, rather he changes

the topic to a new understanding of computation! Smith’s essay is entitled "The

Foundations of Computing." According to Smith, all existing theories of computation are

inadequate because they lack a proper theory of ontology on which to ground them (p.

48). Smith says that the theory of computation is not a theory of computation, when

8

viewed properly (p. 42), rather it is "neither more nor less than a mathematical theory of

the flow of causality" (p. 43).

By requiring that any adequate theory of computation be a full-blown theory of

causation complete with its own theory of ontology and semantics, it is clear that Smith

completely shifts the goal posts on computationalists -- clear out to the parking lot. We

can’t stress enough how misguided this view is. A theory of computation should not be a

full-blown theory everything, contra Smith (p. 53). To assert that it should completely

misconstrues the place of computationalism as a foundational hypothesis in cognitive

science. This is like indicting the theory of gravity because it fails to explain in detail

why people build buildings or airplanes the way they do.

Nowhere is this more evident than when Smith holds that a criterion for any

adequate theory of computation must be that the theory "do justice to – by explaining or

at least supplying the wherewithal with which to explain – the full range of computational

practice" (p. 24). You read right: Smith is saying that any adequate theory of

computation must supply a theory of how computers and other information processing

devices are embedded in social practices. To conflate the theory of computation with

computing practice (let alone their place in society) is to blur very important distinctions

to point where all we have is mud.

Our interpretation of Smith might be a tad harsh, since at the end of his paper he

drastically expands his focus to include not only computation, computers, and their social

9

milieu, but basically everything, including all artifacts! Concerning cognitive scientists,

Smith writes that “[i]t is we, not the physicists, who must develop a theory of everything”

(p. 53). So, at the end of the day, he may be doing (besides everything else),

metaphysics. He certainly thinks he is doing metaphysics: "the range of experience and

skills and theories and results that have been developed within computer science –

astoundingly complex and far-reaching, if still inadequately articulated – is best

understood as practical, synthetic, raw material for no less than full theories of causation,

semantics, and ontology – that is, for metaphysics full bore" (p. 52). If he is doing

metaphysics, then he is after something other than what we are after: a well-behaved

theoretical foundation for cognitive science. And in such a case, it might make sense for

him to look for what computation, computationalism, and computing practice and society

might have in common. Still, one can reasonably wonder why it is that Smith has so

radically changed the rules of the game. And as matters now stand, it is a game no

cognitive scientist should want to play.

(There is plenty of interesting philosophy to engage Smith in. As one example,

why does he go to all this trouble, but still assume that there are natural kinds? Smith

seems to buy into a classical kind of realism which assumes that the world comes with

specific kinds of things in it (atoms, proteins, ducks, galaxies, etc.) and it is science that

studies those things. He gets his radical conclusion by arguing that computation and

computers aren't natural kinds. But getting rid of the staitjacket assumption that there are

natural kinds frees up the metaphysical and epistemological situation considerably

without having to completely recast the theory of computation as a theory of everything.)

10

Jack Copeland

At first glance, Copeland’s essay, "Narrow versus Wide Mechanism," seems to be

an explication of notions of computation that extend beyond the Turing limit (i.e. devices

that could compute functions that Universal Turing Machines could not, such as the

halting problem). But, upon closer inspection, the real agenda is to make a case that

human cognition is not adequately modeled by standard computation, i.e. that

computationalism is false. Copeland presents his case by distinguishing between two

types of mechanism. Narrow mechanism is "the view that the mind is (strictly, can be

simulated by) a Turing machine" (p. 63). Contrasted to this is wide mechanism, the view

"that the mind is a machine but [which view] countenances the possibility of information-

processing machines that cannot be mimicked by a universal Turing machine, and allows

in particular that the mind may be such a machine" (p. 63). From this distinction,

Copeland argues 1) that the notion of mechanism does not exhaust or even entail narrow

mechanism, 2) that the Church-Turing Thesis favors neither the wide nor narrow views of

mechanism, and 3) that asserting that all mechanism is exhausted by, or co-extensive

with, narrow mechanism is to commit what Copeland calls the Church-Turing Fallacy (p.

63 – 64, 72).

One thing that initially struck us about Copeland’s essay is how much space

Copeland devotes to Turing hermeneutics. Since this paper is not a historical paper, why

all the exegesis? What we think is really going on here is an argument from authority.

The argument seems to be that "since even Turing had a notion of wide mechanism (i.e.,

11

of machines stronger than Universal Turing Machines), then there really is a solid notion

of machines stronger than Universal Turing Machines – and minds are those things."

The notion of a super-computation (or wide mechanism) is well-established, so

arguing that there is a coherent, mathematical notion of super-Turing machines by doing

Turing exegesis is pointless. The crucial issue isn’t whether such a notion exists but what

use such a notion has for cognitive science. The answer is that it hasn't any use at all.

The reason it isn’t useful turns on an important epistemological quandary that Copeland

simply misses. Super-computation (wide mechanism) is not useful because we can never

really know if we have successfully built or found such a machine. Suppose, for the sake

of argument, that one day we found a machine in our backyard labeled "Super-Turing

Machine." We would have no way of determining that what was found in our backyard

was in fact a Super-Turing machine. Every test we could ever run would give us results

completely consistent with the view that what we had was a large Turing machine. Better

yet, let’s say God shows up one day and says, in a mellifluous voice, “Here is a Super-

Turing machine, trust me!” Such a proclamation if true would be mildly useful because

we could get answers to lots of questions we couldn’t have before. But, and this is the

crucial point, we would have to assume we actually get the answers – i.e., we would

literally have to trust Him blindly, for we couldn't prove that the machine was a Super-

Turing Machine. And, at the end of the day, blind trust would not help that much for we

would still be able quite easily and rationally to doubt that it was God that had given us

the machine and not Satan, setting us up, as he is wont to do, for some disaster or other.

12

The crux of Copeland’s essay is his alleged Church-Turing Fallacy. As Copeland

defines it, "to commit the Church-Turing fallacy is to believe that the Church-Turing

thesis, or some formal or semiformal result established by Turing or Church, secures the

proposition that, if mechanism is true, the functions generated by Turing machines

provide sufficient mathematical resources for a complete account of human cognition" (p.

72). We suppose that this is a fallacy (a form of equivocation since “mechanism” is

ambiguous between narrow and wide mechanism), but we don’t know anyone who

commits it. Consider for example, Copeland's discussion of Fodor.

Copeland says that this sentence of Fodor’s is false: “If a mental process can be

functionally defined as operation on symbols, there is a Turing machine capable of

carrying out the computation” (p. 73). Copeland claims that this is false because oracle

machines (Super-Turing machines) satisfy the antecedent, but the consequent is false.

But it is quite clear that Fodor meant by the phrase “operation on symbols” some

effective, pencil-and-paper-only operation (the standard way "algorithm" is defined, see

Dietrich, 1999). This definition of "operation on symbols" together with the Church-

Turing Thesis entails the consequent. Copeland is merely being uncharitable in his

interpretation of Fodor. Furthermore, even if Fodor et al. had, through laziness,

committed Copeland’s alleged fallacy, so what? Ask them politely to stop. Require them

to always put in the qualifier "some effective, pencil-and-paper-only" in front of

"operation." We’re sure they would kindly oblige, for this is what they actually meant.

(Note that adding the qualifier does not make Fodor’s claim vacuous, since you really do

need the Church-Turing Thesis to get the consequent.)

13

In the final pages of Copeland's essay he writes that “the crucial issue here is

whether our cognitive architecture, abstracted from resource constraints, is best

understood as being a generator of (one or more) Turing-machine-uncomputable

functions, and the fact that the mind is simulable by Turing machine when certain

resource constraints are operative says nothing either way” (p. 83). We cannot over-

stress how wrong-headed this is. This is not the crucial issue, for we live in a universe of

constraints. Knowing that we are Super-Turing machines sans constraints brings us no

comfort at all – there would be peace in the Middle East if the Israelis and the

Palestinians could learn to get along, or we would all be immortal if all the constraints

that conspired in our death were removed – who would doubt it? The fact of the matter

is that we live in a world of constraints; constraints that make life possible in the first

place. What we really want to know is what a mind and its brain are in this universe, not

in some non-universe of no constraints. Of what use would knowing that be? (There is

an interesting and deep technical point here. With our constraints in place, we are in fact

finite state machines --- far simpler than Turing machines. But, pragmatically, Turing

machine functions are the notion to use because they in fact allow us the flexibility to

theorized about human creativity and reasoning power in way that using FSMs cannot.)

Aaron Sloman

Finally, Aaron Sloman’s essay, “The Irrelevance of Turing Machines to Artificial

Intelligence,” pointedly claims just what the title says: that Turing machines are

irrelevant to AI. We agree with a lot of what Sloman says (see Dietrich 1990b). As he

14

correctly points out, “the development of computers owed nothing to the idea of a Turing

machine or the mathematical theory of computation” (p. 101). And we agree with his

positive statement:

". . .computers . . . are, above all, engines for acquiring, stroring, analyzing, transforming,

and using information . . .” (p. 125). The question is what inference should be drawn

from these facts.

It is clear that quotidian AI (as well as quotidian psychology, linguistics, and

anthropology) doesn't need Turing machines, nor the theory of computation. But this, in

and of itself, is not sufficient to establish its irrelevance to cognitive science or AI. The

reason is that modern cognitive science rests on the computational theory of mind. In

day-do-day jargon, this can couched as the claim that minds are engines for "acquiring,

stroring, analyzing, transforming, and using information just as are those boxes over there

(pointing to, say, your beloved Powerbook)." And that is a fine way to put things. But it

is also appropriate and right to get more abstract and global, and ask "What kind of

machine is an engine for acquiring, stroring, analyzing, transforming, and using

information?" The answer will turn out to be: a Turing machine.

We are claiming that, correctly understood, Turing machines and the attendant

theory of computation, are relevant to cognitive science and AI because they provide a

high-level explanation of what the field is about. Understood in this way, the

philosophical version of the computational theory of mind is really philosophy of science:

it is an abstract description of cognitive science's global trajectory. This view of the

15

relationship between Turing machine theory and cognitive science explains how and

where Sloman's view is correct: Turing machines are irrelevant to AI and cognitive

science because there is no causal or informational relation from Turing machine theory

to cognitive science. Rather, the flow of information is the other way: from cognitive

science and AI to the Turing machine view of these disciplines. This is how Turing

machine theory acquires its relevance to AI and cognitive science. If Sloman is right, the

day-to-day life of cognitive scientists will continue as it always has – they will proposal

algorithms for explaining cognitive capacities. But one nice consequence of our view is

that such behavior on the scientists part will continue to be well-explained by

computationalism.

IV. Conclusions

Scheutz begins his introductory essay with an extended analogy between Star

Trek and Star Trek: The Next Generation. His book is supposed to be the latter, while

older versions of computationalism (whatever those are) are the former. Both versions of

Star Trek are really retreaded 19th century British empire sailing stories: Go out, sail the

world, meet strange new people, have adventures. This really is science fiction. Nothing

even remotely like that is going to happen. But what the heck, it's just a fun metaphor.

It is clear, though, that the better metaphor is Star Wars -- Computationalism: New

Directions is really new flirtations with the Dark Side.

16

References

Chalmers, D. (1994). A computational foundation for cognition. Minds and Machines,

5(4).

Dietrich, E. (1999). Algorithm. The entry in the MIT Encyclopedia of the Cognitive

Sciences. Wilson, R. and Keil, F. (eds). MIT Press. pp. 11 - 12.

Dietrich, E. (1990a). Computationalism, Social Epistemology. 4 (2), pp. 135-154. (with

commentary). Reprinted in E. Dietrich (ed.) (1994), Thinking Computers and

Virtual Persons: Essays on the Intentionality of Machines. San Diego, Academic

Press.

Dietrich, E. (1990b). Programs in the Search for Intelligent Machines: The Mistaken

Foundation of AI, in Partridge, D. & Wilks, Y. (eds.) The Foundations of

Artificial Intelligence: A Source Book. Cambridge: Cambridge University Press.

Dietrich, E. and A. Markman (2000). Cognitive Dynamics: Computation and

representation regained. In Dietrich, E. and Markman, A. (eds.) Cognitive

Dynamics: Conceptual change in humans and machines. Mahwah, N. J.,

Lawrence Erlbaum.

17

Forbus, K., Gentner, D., & Law, K. (1995). MAC/FAC: A model of similarity-based

retrieval. Cognitive Science 19, pp. 141-205.

Hummel, J. & Holyoak, K. J. (1997). Distributed Representations of Structure: A theory

of analogical mapping. Psychological Review , 104(3), 427-466.

