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Abstract∗- Distributed Denial of Service (DDoS) attacks are one 
of the most damaging threats against Internet based 
applications. Many of the DDoS defense mechanisms may 
unintentionally deny a certain portion of legitimate user 
accesses by mistaking them as attackers or may simply not 
block enough traffic to adequately protect the victim. Other 
better performing systems have not yet to reach adoption 
because of designs that require a substantial investment into 
the Internet infrastructure before offering much effectiveness. 
This paper proposes Heimdall, a novel traffic verification 
based framework to protect legitimate traffic from bilateral 
damages. Based on a proof-of-work technique and application 
of distributed hash ID, aside from protecting established 
connections, our system can validate new initial request for 
communication and open valid channels between users and the 
protected server. Through intensive simulation experiments on 
the ns-2 network simulator, we verified that Heimdall scheme 
can effectively protect legitimate communications and filter out 
malicious flows with very high accuracy.  

Keywords: Network security, DDoS Attacks, Traffic verification, 
Proof-of-work system. 

1. Introduction 
Distributed Denial of Service (DDoS) attacks have 

become one of the major threats to Internet based services 
and electronic transactions [9]. While many research efforts 
have been suggested, widespread adoption of any DDoS 
defense has yet to happen. Fighting against DDoS attacks 
effectively on the Internet has been a pressing task which 
involves two critical issues: (1) accurately identifying the 
machines participating in the forwarding of malicious flows 
and (2) effectively cutting the malicious flows at those 
machines while minimizes the bilateral damages on 
legitimate traffic flows [3].  

Previously, we have proposed a distributed change-point 
detection technique to detect DDoS attacks at an early stage 
[3]. A Change-Aggregation Tree (CAT) is constructed and 
nodes in a CAT are routers that participate in forwarding the 
malicious flows. Such routers are called Attack Transit 
Routers (ATRs). The links in the CAT indicate the path 
along which malicious attacking traffic goes through 
towards the victim machine. Essentially, the CAT presents 
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the spatiotemporal propagation pattern of the malicious 
flows inside the network.  

Figure 1 illustrates the CAT construction principle in 
distributed DDoS attack detection. Figure 1(a) shows a 
flooding attack launched from 4 zombies. The ATRs detect 
abnormal surge of traffic at their I/O ports. The victim is 
attached to the end router R0. All the attack flows home 
towards the end router. Figure 1(b) presents a CAT tree 
rooted at the end router. The CAT presents a traffic-flow 
tree pattern rooted at the router connected to the edge 
network, where the victim is attached. Hence, once a CAT is 
constructed, a DDoS attack is detected and ATRs are 
identified. The next task is to filter out malicious flows 
while minimize the impact on the performance of legitimate 
applications. 

Note that CAT based detection scheme can be extended 
into multiple ISP networks or Autonomous Systems (ASs). 
The ATRs in a CAT can belong to multiple domains and 
those domains are not necessarily physically connected with 
each other directly. Due to the limited space, interested 
readers can find more detailed description of CAT in [3].  

  
(a) (b) 

Figure 1. Illustration of the CAT principle. 

Unfortunately, accurate segregation of malicious flows 
from legitimate flows is very difficult. Many of the 
suggested DDoS defense schemes may unintentionally deny 
a certain portion, to a greater or lesser percent, of legitimate 
users’ access by mistaking them as attackers or may simply 
not block enough attacking traffic to adequately protect the 
victim. Other better performing systems have not yet to 
reach adoption because of designs that require a substantial 
investment into the Internet infrastructure.  

In this paper, we propose a novel DDoS attack 
countermeasure framework called Heimdall, which offers 
significant defense without significant infrastructure 



 

changes. Taking advantage of existing proof-of-work 
technique and application of distributed hash ID, aside from 
protecting established connections, our system can validate 
new initial requests for communication and open valid 
channels between users and the protected server. Through 
intensive simulation experiments using the ns-2 network 
simulator, we verified that Heimdall can effectively protect 
legitimate communications and filter out malicious flows 
with very high accuracy. 

The rest of the paper is organized as follows: Section 2 
provides a brief review of related work. Section 3 discusses 
the rationale and architecture of Heimdall. Section 4 
presents the experiment results and the system performance 
evaluation. Section 5 discusses several design issues and 
concludes this paper. 

2. Related Work 
A considerable number of DDoS attack defense and 

response mechanisms have been suggested [2], [9]. This 
section provides a brief overview of DDoS defense schemes 
that are closely related to our work. 

From the perspective of system deploy locations, a DDoS 
countermeasure can be allocated at the victim network, the 
source network, or/and distributed in the network. Defenses 
located at the victim side help to alleviate the excessive 
traffic. Thus, they provide better protection per dollar for a 
victim. The distributed network-wide defense mechanisms 
rely on changes in the current Internet. Such changes would 
need to happen on all parts of the Internet's topology. ISPs 
would have responsibility for source network defenses. The 
providers would then need to guarantee no malicious traffic 
generated from their users can exit the ISP network and 
enter the surrounding networks. Alternatively, traffic that 
does exit has some manner of simple identification that 
allows for simple filtering of malicious traffic [2]. 

Hop-Count filtering [7] proposed to detect suspicious 
packets by comparing the hops between the source and the 
victim. This avoids the assumption that a relationship exists 
between the TTL field in legitimate TCP/IP packets and the 
number of hops a packet travels across. Traffic level 
measurements [1] focus on the way legitimate traffic acts 
when face communication difficulties. In this case, when the 
victim detects an aggregate, it compares the traffic patterns 
before the aggregate with the patterns after the aggregate to 
differentiate legitimate and illegitimate traffic. A broad 
range of anti-DDoS techniques comes under the term Packet 
Filtering [12]. In the case of an attack, or when the pool of 
the victim's available resources is close to empty, the server 
will give preference to trusted users over untrusted ones. 
Trust forms by monitoring traffic behavior patterns to 
separate typical usage from malicious attacks.  

Communication between routers allows for aggregate 
management before it may congest Internet pathways. In 
Pushback defenses [5], [6], the detection of aggregates 
triggers routers to identify malicious flows and implement 
traffic controls. This router sends a message to connected 
aggregate carrying routers and each router continues the 

strategy to push back congestion. StackPi [13] works to 
build a map of the route packets take as they traverse across 
networks to identify the source of malicious traffic in place 
of non reliable source IPs. The IP Identification field of the 
IP packet contains hashes of the packet's path. As the field 
fills, newer entries may overwrite older ones, but the 
amount of concatenation, and the range on routers which 
perform such markings are adjustable depending on the 
implementation of StackPi. WebSOS [5] offers a great deal 
of protection with a great deal of complexity. Direct 
communication with the victim cannot happen. The only 
communication happens through perimeter nodes. Each 
incoming connection must also have passed verification 
from the protected server. The perimeter of secure nodes 
have the responsibility of ensuring malicious traffic stays 
out of the secure network and randomizing the paths taken 
once the data gets inside. 

Since DDoS attacks used spoofed IP addresses to avoid 
detection, the attackers fail to establish a valid connection 
and prevent legitimate users from making one. Portcullis 
[11] uses a proof-of-work system to prioritize capability 
request packets. Potential users must spend CPU time to 
solve puzzles and in doing so, DDoS advantage of superior 
available bandwidth lessens, allowing legitimate users to 
establish connections. While the intermediate network 
defenses do encompass the victim network and the source 
network, D-WARD [10] falls entirely in the domain of the 
source network: ISPs. In the event of aggregates, D-WARD 
will dramatically reduce available bandwidth or drop 
outgoing packets entirely. The exterior routers can monitor 
the valid IPs that exists behind them, preventing forged IP 
addresses from leaving the AS. 

Among the previously reported works, Portcullis and 
Pushback defenses most closely resemble Heimdall. To 
ensure the validity of puzzles, Portcullis uses unique 
identifiers distributed from DNS servers. While Portcullis 
shows a great deal of success with “limited” deployment, its 
success still relies on the cooperation of the Internet's 
governing bodies to allow for the distribution of puzzle 
keys. In contrast, Heimdall utilizes the CAT tree obtained 
during the detection of DDoS attacks [3] to track the path of 
malicious traffic flows. Work reported below focuses on the 
principle and framework of the countermeasure, the specific 
design and implementation of puzzle generation/solving 
functions are beyond the scope of this paper. 

3. Design of Heimdall Architecture  
This section presents the function blocks of our Heimdall 

architecture first, then the detailed design and principles are 
introduced in section 3.2. 

3.1 Heimdall System Architecture 
As shown in Figure 2 below, Heimdall architecture 

consists of three distinct function units: a puzzle/identifier 
generator, a puzzle solution verifier, and a puzzle resolver. 
They are allocated at the victim, the intermediary Heimdall 
routers, and the user machine respectively.  



 

The puzzle/identifier generator is deployed at the user 
machines that adopt the Heimdall system. When a DDoS 
attack is detected, a CAT is constructed and the victim is 
recognized. Then the generator produces a puzzle and a 
unique puzzle identifier (UPI). The victim machine sends 
them to Heimdall routers in the CAT tree. And the generator 
will keep producing new UPIs and sending them to 
Heimdall routers periodically. 

Puzzle verifiers are deployed in the intermediary 
Heimdall routers. When an initiation of new connection to 
the victim is received, the router will not forward this 
request to the victim immediately. Instead, the verifier 
generates a new ID for the client and sends it along with the 
puzzle and UPI to the client. Then, the router validates the 
client’s responses. Only if the client solved the puzzle 
correctly the router will forward the connection initialization 
request to the victim. Otherwise, any packet sent by the 
client to the victim will be dropped.  

At the client side, there is a puzzle resolver. This enables 
the client to receive packets from the router, which contains 
a puzzle, a UPI, and an ID. Upon receiving such a packet, 
the resolver will figure out a puzzle solution and transmit 
the result to the appropriate router. 

 
Figure 2. Deployment of Heimdall function units. 

3.2 Design Rationale 
With the three main components as illustrated in Figure 2, 

the Heimdall system works by utilizing a proof-of-work 
technique similar to Portcullis [11]. However, Heimdall 
system focuses primarily on validating the initial request for 
communication, the opening of a valid channel between 
clients and the protected server. Certain existing systems 
allow established connections to prioritize traffic before it 
reaches the server. However, these systems lack a way for 
new users to establish valid connections during a DDoS 
attack as users whose requests appear in an aggregate may 
initially appear indistinguishable from the malicious traffic. 
The design goal of Heimdall is to guarantee that all 
legitimate users can establish connections with the protected 
victim even during a DDoS attack. 

Using the CAT constructed during the DDoS attack 
detection [3], as the root of the CAT, the victim server will 

communicate with the ATRs and ATRs communicate with 
peers during the verification process as described in [3]. For 
ARTs that have Heimdall puzzle verifier embedded, the key 
function they take can be broken down into two parts: 
puzzle identification and puzzle verification.  

Puzzle identification provides an approach by which 
ATRs can verify that the clients have solved the assigned 
puzzles, rather than simply computing different puzzles 
beforehand. Only upon detection of an attack, the victim 
will generate and send puzzles and UPIs to ATRs. The UPI 
value will be updated periodically, so that each UPI remains 
valid for some fixed period of time.  

Through puzzle verification the verifiers recognize and 
validate legitimate users if the replied UPI and puzzle 
solution match. The puzzles need to meet certain criteria. It 
should allow users to geometrically increase their effort, 
take the ID and UPI as inputs so multiple users cannot share 
work and is cryptographically secure.  

For clients to perform proof-of-work, they also need to 
complete two tasks. Firstly the clients have to figure out the 
correct solution of the puzzle in fixed time constraint. Then, 
a hash function is executed with the input including the 
puzzle solution, the UPI and the ID issued by the router.  

An example puzzle is similar to the one used in Portcullis 
[11], where the user performs a hash function H(x, r, ID) = 
p. Here, x is the solution to the puzzle, r is the UPI and ID is 
the assigned client ID. The UPI prevents attackers from 
using the same solution to launch replay attacks as the 
server would release its own identifier. This also removes 
the need of source IP address as part of the puzzle 
parameters. Each machine starting to establish a connection 
must include a specific ID given by the router. When 
duplicate IDs are detected, all received packets except the 
first one will be dropped to preclude collaborative work on 
the puzzles.  

Figure 3 illustrates the workflow of the Heimdall system. 
Once a DDoS attack has been detected, a CAT tree will be 
created as shown in Figure 1 and the victim is identified. 
Then the ATRs will receive puzzles and UPIs periodically 
from the victim machine. When a client initiates a new 
connection with the victim, the Heimdall router will 
generate a new ID for the client and send it along with a 
puzzle to the user. Once solved the puzzle, the user will 
calculate a hash function H(x, r, ID) with the inputs 
including the puzzle solution, the UPI, and the client ID. 

When the router receives the hash function output from 
the client, it will check whether it matches the correct result. 
Only users which are able to pass the verification are 
allowed to connect to the victim. 

 In case when an ISP fully adopts Heimdall, it is ideal to 
make all of the edge routers support Heimdall to best protect 
its clients. The edge routers may themselves become targets 
of a coordinated DDoS attack. If the path to such a router 
does not include any other hardened routers it may not be 
able to cope with the attack. However, the attackers have 
very little ability to control the routes their traffic takes and 
would not be able to ensure such attack paths. If there are 



 

multiple ISPs adopt Heimdall, the spread of Heimdall 
routers would make such attacks targeted on individual 
routers even more difficult. 

 

 

Figure 3. The workflow of Heimdall. 

4. Experiment and Performance Analysis 
In this section, we give the definition of the performance 

evaluation metrics first, and then the simulation experiment 
configurations are discussed. In subsection 4.3, the 
numerical simulation results and some discussions regarding 
the effectiveness of the Heimdall system are presented.  

4.1 Performance Evaluation Metrics 
To evaluate the performance of our Heimdall system, we 

focus on the percentage of new legitimate connections 
established versus the delay users need to tolerate. We 
studied the effectiveness of our system with different values 
of parameters including the percent of existing legacy 
routers, the amount of malicious traffic, and the number of 
Heimdall routers. Below are the metrics we adopted in our 
simulation experiments: 

• Successful connection rate: the percentage that 
legitimate users can connect to the server; 

• Connection delay (sec.): the time required by the 
three-hand shake; 

4.2 Experiment Setup 
The network topology used in our ns-2 simulation 

experiments is similar to Figure 1. The act of puzzle solving 
is simulated by setting a fixed delay time that the users wait 
before sending a result. As shown in Figure 1, once the 
CAT tree has been constructed we know which routers are 
ATRs. Heimdall routers are randomly placed in the 
network. The victim server is connected to R0, while the 
other ASs contain malicious DDoS attack zombies and 
legitimate users who desire to access certain services 
provided by the server. As each user tries to reach the 
protected server (victim) their traffic must pass through a 
number of intermediary Heimdall routers. The total amount 
of malicious traffic from zombies rages from 20 KB/Sec to 
200 KB/Sec. During DDoS attacks, 1000 new TCP requests 
are generated. 

4.3 Experiment Results and Performance Evaluation 
Figure 4 compares the percentages of successful newly 

initiated connections under variant DDoS attacks. As the 
amount of malicious traffic becomes higher than 120 
KB/Sec, it is more and more difficult for users set up new 
connections with the server. The successful connection rate 
decreases quickly. As shown in Fig. 4, without the help of 
Heimdall routers, when the amount of malicious traffic is 
200 KB/Sec, less than 40% of the newly initiated 
connections can be set up successfully. In contrast, when 
three routers, R4, R6, and R9, support Heimdall scheme, all 
the new connections are set up successfully under variant 
amount of malicious traffic. 

Figure 4. Successful connection rate. 
 
Figure 5 presents the average delays those success 

legitimate connections have to experience under different 
attacking scenarios. Again, it is obvious that the users need 
to wait longer time when the DDoS attack traffic rate 
increases. Particularly, the average delay increases 
drastically when the attacking rate is higher than 140 
KB/Sec. Our simulation results also show that the Heimdall 
routers effectively decrease the delay the users suffer.  

In addition, compare with the average connection delay 
when there is no DDoS attack, the puzzle solving operation 
does introduce some extra delay. Compare to the much 
longer delay under attacks, it is acceptable for legitimate 
users to spend a little bit time to solve the puzzles.  



 

 
Figure 5. Average connection delay. 

Figure 6 illustrates the results of the impact of the number 
of Heimdall routers in the network. The successful 
connection rate increases in proportion to the number of 
Heimdall routers. When more than 3 Heimdall routers exist, 
all of the new connections are established successfully. 
Connection delay decreases toward the number of Heimdall 
routers is 3, and then it slightly increases. This indicates that 
placing too many Heimdall routers introduces the control 
overhead to establish a new connection. It is interesting to 
see that the moderate number of Heimdall routers is 
preferred to increase the successful connection rate in 
keeping with lower delay. 

 
Figure 6. Average connection delay. 

5. Conclusions 
It is nontrivial to minimize the bilateral damages to 

legitimate traffic while trying to filter off malicious DDoS 
attack flows. DDoS defenses may unintentionally deny a 
certain portion, to a greater or lesser percent, of legitimate 
users’ access by mistaking them as attackers.  

This paper reports Heimdall, a novel countermeasure 
system that effectively validates new initial request for 
communication and open valid channels between users and 
the protected server. The experimental results verified the 
effectiveness of the Heimdall system. However, the reported 
results are merely based on NS-2 simulation, which is still 
not close enough to what happened in real world. Currently, 
we are planning conduct more comprehensive and larger 
scale emulation experiments on the DETER testbed [15]. 

Next, we will develop a complete mathematic model to 
gain deeper insight. On the other hand, this paper focused 
on the system architecture level study, and assumed any 

existing puzzle-solving approach can be adopted. In our on-
going efforts, a novel proof-of-work system is being 
designed to take full advantage of the established CAT tree 
once a DDoS attack has been detected.  
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