
A Study of SSL Proxy Attacks on Android and iOS Mobile Applications

John Hubbard, Ken Weimer, Yu Chen
Department of Electrical and Computer Engineering, Binghamton University, SUNY, Binghamton, NY 13902

E-mail: {jhubbar1, kweimer1, ychen}@binghamton.edu

Abstract—According to recent articles in popular technology
websites, some mobile applications function in an insecure
manner when presented with untrusted SSL certificates. These
non-browser based applications seem to, in the absence of
a standard way of alerting a user of an SSL error, accept
any certificate presented to it. This paper intends to research
these claims and show whether or not an invisible proxy based
SSL attack can indeed steal user’s credentials from mobile
applications, and which types applications are most likely to
be vulnerable to this attack vector. To ensure coverage of the
most popular platforms, applications on both Android 4.2 and
iOS 6 are tested. The results of our study showed that stealing
credentials is indeed possible using invisible proxy man in the
middle attacks.

Keywords-Mobile Devices, SSL, TLS, Security, Proxy, Man-
in-the-middle, Android, iOS.

I. INTRODUCTION

In todays hyper-connected world, mobile computing has
become a pervasive technology. Everyone from CEOs of
large companies down to children carry smart phones and
tablet computers with always on convenience and connec-
tivity to the global Internet. On these devices, small, internet
enabled mobile apps reign king. We use apps to check our
bank accounts, secure our homes, hold our photos, and store
the contact information of everyone we know. We use our
apps for social networking, holding our documents, finding
directions, online shopping, and other new functions almost
every day, but how often do we consider what trusting our
phone with all of this private information means? Many
people probably know the risk of what could happen if they
were to lose their smart phone or tablet, but what about
the information that can be stolen while the device remains
safely in our hands? It is easy to believe that competent
developers from recognizable companies would be effective
at securing mobile data, but this may not always be true.
The trust put into these apps goes far beyond simple data
exchange on the Internet - peoples financial and personal
information is on the line.

In this paper, we will explore the claims of the ArsTech-
nica.com article [3] that inspired this project by putting
a slew of iOS 6 and Android 4.2 applications to the test
against man in the middle invisible proxy attacks. Section 2
contains detail on our motivations for researching this topic,
section 3 reviews some previous work in the field of mobile
application security, section 4 explains how our attack was
performed, and section 5 and 6 will go over our analysis and
the conclusions we have drawn as a result of this research.

II. MOTIVATION

In this project, we seek to answer the question: Should we
trust our mobile applications to protect our data? Mobile
apps typically use the Internet to provide much of their
functionality, gigabytes of data are sent from our phones
through the air every month. This data contains all sorts of
sensitive information, and to add to the problem, software
developers are in a race to provide application based services
for this data, and ultimately, to extract a paycheck from it.

New applications are created, iterated, and sold at light-
ning speed, and it is often discovered that in the rush
to grab revenue, security has taken a back seat to fast
deployment. We trust that in transit, our data is protected
using Secure Sockets Layer (SSL)/Transport Layer Security
(TLS) encryption [7], but due to the complex nature of
software and the multitude of operating system versions it
must run on, research suggests flaws may exist in many
applications implementation of this security.

An inexperienced programmer may use application-
building frameworks that help them get past the most
daunting aspects of coding and focus on design and function.
What they might not realize is that the code theyre pulling
in from a library may not implement a function the way they
expect. If an encryption scheme is not implemented correctly
at the framework level, or the correct settings are not used,
an entire group of applications may be left open to attack. It
may seem like a needless exercise to understand prewritten
code that provides a service such as SSL encryption, but
if this code is left unreviewed, undesirable settings may
go unnoticed and uncorrected in the software development
cycle. They also may relax security controls for application
testing, but if these controls are not put back at the correct
settings before the software is released, vulnerabilities could
remain.

The SSL/TLS encryption layers are generally the only
means of defense used against collecting Internet traffic
in plain text. If an attacker could intercept this traffic,
username and password key pairs could easily be skimmed,
credit card numbers, home addresses, phone numbers, social
security numbers, PINs, and birthdates could also potentially
be trivially recovered. The extended danger of this is that
research has shown over the years that this information is not
usually unique across sites. In the event that one application
implements these security layers incorrectly, opening itself
up for attack, the information could be used in alternate



applications even if they protect themselves from similar
exploits.

Over the course of this project, we attempted to test for
the mistake of incorrect SSL certificate security validation
across the Apple iOS and Google Android platforms. We
gathered a wide sample of programs with backings large
and small and ran them through a realistic attack scenario.
We believe this is a valuable area of research due to the
prevalence of free Wi-Fi hotspots in public areas, and the
relative ease in which this type of attack is carried out.
We also believe it represents one of the most likely threat
scenarios when it comes to users data, and seek to answer
the question of if we should trust our apps when it comes
to the closed source applications so many of us download,
use, and trust on a day to day basis.

III. RELATED WORK

A. ActiveSync Wipe

Microsoft Exchange servers require the ability to control
policy on mobile devices. Changes to settings such as
password complexity, encryption, and screen timeouts are
pushed to a device from the server through ActiveSync at the
time of account creation. A user must accept these settings
to enable the connection to Exchange server and therefore
generally are allowed by the user. This policy push can occur
whenever a request is made to the ActiveSync server.

Hannay has developed an attack using a rogue Wi-Fi
network that presents a self-signed certificate to any de-
vices that connect to it [4]. Most mobile devices use SSL
handshakes as a means of authentication. Since the rogue
network does not have the private key for the server the
device is attempting to connect to, the server makes use
of a self-signed certificate to complete the SSL connection.
Masquerading as an exchange server, it listens for a request
to provision and replies with an HTTP 449 error until the
device eventually issues the request. Once a connection is
established and the provisioning request is sent, the server
responds with the binary encoded XML required to initiate
a remote device wipe.

This attack was successfully executed using both the
Android Operating System and Apple iOS resulting in a
complete self-erase of the device. The author notes that this
could be tailored to extend the attack to more than just
remote wiping a device. Actions such as intercepting emails,
stealing credentials, and forcing syncs with a rogue machine
would be possible.

B. Analysis of Android SSL (In)Security

An analysis of the state of SSL used in Android apps was
performed in [2]. For the experiment 13,500 Android apps
were downloaded from the Google Play Market and studied
by researchers to learn how they used SSL connections.

Their vulnerability against Man-in-the-Middle (MITM) at-
tacks was targeted by testing each app for inadequate or
incorrect use of SSL certificates.

They found that of the 13,500 apps tested that 1,074 (8%)
contained potential vulnerabilities to MITM attacks. Of these
apps with a potential vulnerability, 100 were subjected to
manual tests to discover what data could be stolen. Forty-
one of the apps were shown to provide sensitive data over
a connection secured with a bad SSL certificate.

Not only could user data be intercepted, but it was found
that code could be injected back into a program. An anti-
virus scanner was susceptible to having its virus signature
database manipulated to detect any app as a virus, or to
completely disable virus detection.

The study went on to test the human factor involved in
mobile security, finding that over 50% of 754 participants
incorrectly judged the security of their mobile connection.
By forcing unprotected connections and using incorrect
certificates to invoke warning messages by the operating
systems, users were quizzed on whether the connection
was safe. They typically misinterpreted or didnt understand
the visual clues and warnings that were displayed, opening
themselves up to further assisting sensitive data being stolen.

IV. TESTING METHODOLOGY AND RESULTS

In order to perform our tests, we divided attempts to steal
credentials into two styles: invisible SSL proxy attacks, and
manual proxy setup sniffing. The first of these methods is
the main focus of our research because it is what an attacker
would use in a typical scenario to surreptitiously steal login
info on a shared Wi-Fi network with the victim. The second
method, although not likely to be used as a surprise attack,
was studied in order to see how different applications react
under a realistic proxy use case, which will likely involve
accepting an untrusted certificate, and implies potentially
exposing a users credentials to whoever is in charge of the
proxy.

A. Invisible SSL Proxy Attack

The first type of attack we performed was a MITM attack
combined with an invisible SSL enabled proxy. This attack
we believe is an extremely realistic scenario of how someone
trying to steal credentials would operate. The first step of
this attack is to generate a Certificate Authority (CA) marked
certificate that can sign the various other certificates that our
tool will be dynamically generating and serving to the victim
device. The contents our generated certificate can be seen in
Figure 1.

The second step of the invisible proxy attack is to make
sure the attacking machine has traffic forwarding turned on
so that our proxy will be able to receive forwarded victim
traffic. In addition, a firewall rule must be created to route
all victim traffic with a destination port of 443 to the port



Figure 1. A fake CA certificate.

that sslsniff, our invisible SSL proxy tool [5], is set to accept
traffic on.

The third step of the attack is to perform the actual MITM
attack to gain visibility of the users traffic. We accomplished
this task with the help of the ettercap tool [6]. It allows us
to reroute a victims traffic through our computer using ARP
requests in a way that will be totally invisible to the average
user. The main way a victim of this attack could check if this
were occurring would be to check their ARP table. In order
to spot an active attack, they would need to know the MAC
address of the router, and notice that the current one listed
is incorrect. Given that we are assuming our victim is on a
mobile device, it is exceedingly unlikely that this step would
be noticed by the victim, especially since there is no built
method in iOS or Android to check this. This is one area
of possible continued research, methods could be developed
to protect a user if a MAC address suddenly changes for
the gateway on a know Wi-Fi network. Armed with this
knowledge, the user may be able to make an intelligent
decision to cease communicating or at least verify settings
to ensure an attack is not underway.

The final step of this attack is to set up the proxy server to
hijack all of the victims SSL traffic. The sslsniff tool listens
on the forwarded port chosen earlier for victim traffic. When
the victim attempts to make a secure connection, our proxy
silently intercepts the request and replies with a certificate
dynamically generated by sslsniff for the intended website,
signed by our fake CA certificate. The secure tunnel is now
broken at our computer so that we can see all traffic in plain
text, and all transactions are logged to a text file. This attack

Figure 2. Invisible SSL proxy traffic path.

will only succeed if, and only if our victim application does
not mind that the certificate it receives was signed by an
untrusted CA. An illustration of the attack traffic path can
be found in Fig. 2.

In our tests, once the attack was set up, applications from
both iOS and Android were tested. We attempted this attack
on 24 iOS 6 applications and 41 Android 4.2 applications,
all using the most recent versions of the application that
were released as of 5/3/2013. In terms of iOS applications,
we were unable to retrieve any credentials from all that were
tested. Every attempt was met with errors of various types
indicating the connection was not safe, or that there had
been some sort of general network error.

Android applications however, were a different story.
Although many applications rejected our attempts, surpris-
ingly, there were multiple applications from well-known and
established companies that had no problem continuing traffic
with our invalid certificates. There was no indication of an
error presented to the user, and the applications continued to
operate as if nothing was wrong. Figure 3 shows an example
of this attack leading to the captures of credentials from the
Office Depot Android application.

B. Manual Proxy Setup

One interesting situation we found was that of when a
manual proxy setup was entered for a Wi-Fi network. On
iOS, for example, we observed that some applications would
continue to refuse to connect. This could be due to the
application rejecting the certificate, or due to the application
just plain being incompatible with proxies, there was no sure
way to tell. However some applications would, in this type of
setup, begin to accept the certificates signed by our untrusted
CA.

Figure 3. Office Depot application traffic showing exposed user creden-
tials.



Figure 4. Zappos API credentials captured with mitmproxy through
manual network proxy setup.

This sort of proxy configuration could potentially exist if a
user is tricked into installing a device profile preloaded with
proxy server settings. A file containing the profile could be
generated by a malicious user and distributed to unknowing
victims. Once installed, all traffic from proxy supporting
applications on that device would be routed through the
specified proxy. In the proxy this data is unencrypted and
could be analyzed and used with ill intent.

One example of this behavior is with the Zappos appli-
cation. Zappos iOS app would give a network error during
the MITM attack using the invisible proxy. However, the
application gave no complaints when the program mitmproxy
[1] was used to proxy the traffic via a typical SOCKS proxy
connection. A screenshot of captured example credentials is
shown in Fig. 4.

This behavior isnt necessarily a vulnerability per se, but
it is interesting to see that some applications will accept
proxied connections and some will continue to refuse. A
well-informed user utilizing a proxied connection after all
should know and expect that their SSL connections must be
broken and encrypted again by the proxy. Assuming this, the
user should also be aware that they are accepting the risk
that the proxy could be maliciously modifying their traffic
in transit, or store their credentials, if those in charge desired
to do so.

Our research showed that there was no easy way to predict
which applications were likely to work with a proxy. Doing
so is likely to be debated in app design because on one
hand, an authors application will not work under proxy
situations, leaving the users stranded if this is the only type
of connection available. On the other hand, it ensures that no
matter what, a users credentials will not be able to be stolen
by any malicious users operating the proxy. An application
creator who wanted to enable proxy use while still holding
user data safe could mitigate this problem entirely by using
another layer of encryption at the application data level. This
would allow a user to send credentials through a proxy and
continue to prevent them from being exposed or modified in
transit.

V. ANALYSIS

Of the 24 iOS applications that were analyzed, the only
vulnerability we ran into was that of flyertalk.coms appli-
cation, which sent login info in plain text via a regular
HTTP POST. No applications were found that were willing
to accept our rouge CA signed certificates, a full list of tested
applications can be found in the Appendix. Searching as to
why this may be turned up one possible answer, and that is
that it appears that a class that is commonly used by iOS
developers to establish https connections hides the variable
that controls the ability to accept invalid certificates.

The allowAnyHTTPSCertificateForHost parameter in the
NSURLRequest class1 is this hidden Boolean value, and
appears to be in control of iOSs willingness to accept
untrusted CA signed certificates. The variable is not men-
tioned anywhere on the developer API reference page for
the NSURLRequest class, and it seems plausible that due
to this, many developers may never know of its existence
and thus leave it at its default setting, causing iOS to reject
certificates signed by untrusted CAs.

Android applications, however, showed a different re-
sponse to our attacks, of the 41 applications tested, 11 were
willing to accept invalid certificates, and 3 didnt use SSL
at all (one of them being the application from flyertalk.com
that also wasnt protected on iOS, the other 2 were a option
trading program and frequent flyer point tracker.) The full
list of Android applications tested and their security findings
can also be found in the Appendix. Of the 11 applications
that were vulnerable, three were financial applications for
stock and option trading from smaller companies, four were
popular name commercial brands, one was a popular travel
deals site, one was a coffee rewards card number aggregator
and two were small brand ticket brokers that did not expose
user data due to a lack of login functionality, but nonetheless
were willing to proceed with our certificate.

One interesting thing that was noted about applications
that were found to be vulnerable to SSL attacks on Android
is that the same companys iOS application was not. The list
of these apps is as follows: Zappos, Newegg, OfficeDepot,
Staples, TravelZoo, AnyOption, EZTrader, GlobalOption,
and TradeRush. Of these applications, EZTrader and Glob-
alOption had applications that seemed to have identical
Android GUIs and traffic structure. They also seemed to
match on iOS as well as seen in Fig. 5.

This leads us to believe that one of the main reasons for
insecurity may be the use of application building frameworks
that default to poor security selections. This also makes us
believe that even though some framework was behind both
of these applications iOS versions, whichever framework
was chosen for iOS must not have the SSL security issue.

1https : //developer.apple.com/library/ios/#documentation/
Cocoa/Reference/Foundation/Classes/NSURLRequestC lass/
Reference/Reference.html#//appleref/doc/uid/TP40003762.



Figure 5. Identical GUIs on iOS for two trading programs.

For other Android applications, we did not find similar
looking matches, but due to the small number of Android
applications we were able to test, it is entirely plausible that
many applications may exist that match those too. This is
another area that deserves further research, and if particular
Android frameworks could be identified that are at fault for
these errors, it may be a very simple fix to ensure that future
applications developed with them do not default to accepting
invalid certificates.

Analyzing the Android API that controls certificate val-
idation shows a different situation than that of iOS doc-
umentation. The Android java class HttpsURLConnection
controls https connections and with it comes the ability
to assign an application specific TrustManager that imple-
ments a KeyStore that can accept self-signed certificates.
In addition, in the documentation, there is mention of an
X509TrustManager and CertPathValidator class that, when
implemented incorrectly could allow the accepting of all cer-
tificates2. Our research seems to back up the case that at least
some Android application authors are indeed implementing
this class incorrectly, allowing certificates not signed by a
trusted CA to pass, and therefore allowing traffic to continue
and potentially become exposed.

VI. CONCLUSIONS

Our research into the topic of mobile application security
points to several conclusions. One is that some Android
applications are most certainly vulnerable to an invisible
proxy MITM attack. The users could be at any public
access point, have someone on the same network perform
the identical attacks we used for our research, and without
the victims knowledge or any warning from their device
whatsoever, have their credentials stolen. This is a very real
danger and any user who plans on using applications that
require a login or personal information on a public network

2http : //developer.android.com/reference/javax/net/ssl/
HttpsURLConnection.html.

may want to utilize a VPN to ensure their credentials stay
safe.

The good news however, is that most mobile applications,
in our experience, protect a user from this attack. Generally,
Android applications from big names such as Facebook,
Twitter, Amazon, and everything from Google itself will deal
with certificates correctly and not allow credentials to leave
the device without a trusted CA signed certificate. It was
also good news that all applications that we tested on iOS
have rejected any network connections while under invisible
proxies. Differences in accessibility to the classes that drive
the acceptance or rejection of untrusted certificates between
the two operating systems seem to be one possible reason for
this discrepancy, but investigation of this is a suggested area
of continued research. Identifying the application creation
frameworks that we believe were used to create vulnerable
Android applications and changing their default settings is
something that may go a long way in securing applications
on the Android platform.

Developers on these platforms need to be conscious and
knowledgeable in this realm. From our analysis of the iOS
and Android API, we speculate that the difference in ease of
use in the Android development framework may be a factor
in the difference in security posture. The multiple settings
and little guidance on how to properly implement a secure
connection could be confusing for a novice programmer. The
advice given in many public forums is to turn SSL certificate
verification off during development instead of going through
the trouble of obtaining a legitimate certificate, and later to
turn those safeguards on only when the project is nearing
completion. In a long development cycle this could be
forgotten or overlooked, especially with critical deadlines
and launch dates approaching.

Ultimately, mobile application security is a new field
and it comes as no surprise that some applications come
with poor security. Identifying and fixing these applications
however should be made a priority for researchers and
developers alike. Finding the root cause for the development
of applications that accept untrusted CA signed certificates
is likely not a difficult task and if frameworks are to blame,
getting the poor default choices changed is one simple action
that would result in a significant increase in application
security across the board.

REFERENCES

[1] A. Cortesi, “mitmproxy: a man-in-the-middle proxy,”
http://mitmproxy.org/, 2013.

[2] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why eve and mallory love android: An analysis of
android ssl (in) security,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 50–61.

[3] S. Gallagher, “Mobile app security: Always keep the back door
locked,” http://arstechnica.com/security/2013/02/mobile-app-security-
always-keep-the-back-door-locked/, 2013.

[4] P. Hannay, “Exchanging demands,” Blackhat USA 2012, 2012.
[5] M. Marlinspike, “sslsniff tool,” http://www.thoughtcrime.org/software/sslsniff/,

2013.



[6] A. Ornaghi and M. Valleri, “Ettercap,”
http://ettercap.github.io/ettercap/, 2013.

[7] E. Rescorla, SSL and TLS: designing and building secure systems.
Addison-Wesley Reading, 2001, vol. 1.

APPENDIX

LIST OF APPLICATIONS AND VULNERABILITY
STATUS

A. iOS 6 Applications Tested Secure from SSL Attack
Alien Blue
AnyOption
Craigslist
EZTrader
Facebook
Flyertalk* (does not use SSL)
GlobalOption
Goodreader
Newegg
OfficeDepot
RedBox
Snapchat
Splitwise
Spotify
Staples
ToodleDo
TradeKing
TradeRush
Travelzoo
Twitter
Verizon Wireless
Waze
Wordpress
Zappos

B. Android 4.2 Applications Tested Secure from SSL Attack
Amazon
CloudMagic
Currents
Dominos Pizza
Dropbox
EasyJet
Ebay
Expedia
Facebook
Google Play Store
Groupon
Kik Messenger
Living Social
Mint
Netflix
Pandora
Pinterest
Qatar Airways
Skype
Snapchat
Southwest Airlines
Splashtop
Twitter
United Airlines
Walmart
Zinio

C. Android Applications Vulnerable to MitM SSL Proxy
EZTrader
GlobalOption
MyCoffeeCard
Newegg
Office Depot
PeakSeats
Staples
Stub Nut
TradeRush
TravelZoo
Zappos

D. Android Applications No use of SSL
AnyOption
Flyertalk
MilePoint


