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ABSTRACT∗ 
A community network often operates within the same 
ISP (Internet Service Provider) domain or 
administered by a virtual organization spanning 
across multiple network domains with an established 
trust relationship. To counter DDoS (distributed 
denial-of-service) attacks in such a federated network 
environment, the routers can work cooperatively to 
raise early warning to avoid catastrophic damages. 
This paper proposes a collaborative architecture to 
detect DDoS flooding attacks. The scheme appeals, in 
particular, to protect networked resource centers that 
work as a collaboration Grid.  

By monitoring the distribution of suspicious traffic 
changes over a number of attack-transit routers, we 
developed a new Change-Aggregation Tree (CAT) 
mechanism to enable early detection of DDoS attacks 
on community networks. We want to detect flooding 
attacks as early as possible. Here, we report 
preliminary NS-2 simulation results on a single-
domain ISP core network to prove the effectiveness of 
the new collaborative CAT architecture for DDoS 
defense. The simulated system achieved a detection 
rate as high as 95% with less than 1% of false 
positive alarms. Extensions of this architecture to 
cross-domain DDoS defense are discussed with 
further research challenges identified.  
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1. INTRODUCTION 
Community networks and Grid systems can be 
large or small, ranging from local-area to wide-area 
networks. They form the backbone infrastructure 
for building multi-site computing clusters, 
collaboration Grids, P2P systems, web services, 
enterprise Grids, or any ISP-based core networks 
for community services. Community networks and 
collaboration Grids are often formed under a 
federation of IT administrators. Cooperative 
computing and high degree of resource sharing are 
expected in such networked systems [3][11][12].  

The basic requirement in network-based resource 
sharing is to provide reliable and trusted access of 
local and remote resources in distributed 
applications [11]. Distributed Denial of Services 
(DDoS) attacks have been identified as the most 
damaging threat to such hot-spot resource centers 
[8][9][14][21][26]. To defend against DDoS 
attacks effectively, the key idea is to achieve real-
time detection of the network anomalies.  

A satisfactory solution must detect the flooding 
anomaly as soon as the attacks are launched. 
Today’s DDoS defense schemes are most based on 
detecting sustained congestion on communication 
links [18], run out of half-open SYN queue, or 
imbalance between incoming and outgoing traffic 
volume on routers [6]. Unfortunately, the time 
overhead to reveal these anomalous conditions is 
too long, making the detection scheme ineffective 
to fence off the DDoS attacks timely.  

Consequently, it is highly desired to detect the 
early launching of DDoS attacks instead of waiting 
for the flooding to become widespread. We 
propose a collaborative change-detection scheme to 
solve this problem. Using the NS-2 simulator, we 
carried out intensive experiments to verify the 
effectiveness of our new DDoS defense system.  

Under different type of flooding attacks with 
variant flooding rate, our scheme is capable of 
detecting the start of DDoS attack quickly with 
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high accuracy. Another impressive advantage is the 
small false positive alarm rate experienced.  

Treating Internet traffic as stochastic process, 
sequential change-point detection technique was 
developed to detect the start of flooding DDoS 
attacks [2]. The typical change point detection 
methodologies are hindered by lack of accurate 
statistical model to describe the pre-change and post-
change traffic distributions. The nonparametric 
CUSUM algorithm was adopted for its simplicity and 
low computational complexity [2][24][27].  

Wang et al. [27] adopted the nonparametric CUSUM 
method to detect TCP SYN flooding attacks. This is a 
well-designed change detection technique at the 
gateway level. Unfortunately, it is not a distributed 
solution and will not work if the edge network has 
more than one gateway routers.  

Peng et al. [24] took a similar approach to monitoring 
the source IP addresses. Due to IP address spoofing, 
there are a lot of fake IP addresses used in DDoS 
attack. It requires an offline database to keep track of 
IP addresses appeared in normal cases. Recently, 
Soule et al. [25] implemented a variant of the 
classical likelihood ratio test. However, their methods 
suffer from long detection delays.  

It is more efficient to perform detection at victim end 
and filtering or rate limiting at source side [13][20]. 
For instance, COSSACK [23] and DefCOM [19] 
chose to deploy detector at the victim side and send 
alert to filter or rate limiter located at the source side. 
Their premise is that edge networks are willing to act 
cooperatively. However, no one can guarantee this 
cooperativeness among routers owned by competing 
ISPs or different organizations. 

The rest of this paper is organized as follows: Section 
2 describes the system architecture. Section 3 
characterizes DDoS attack patterns. Section 4 
presents the principle of change detection method. 
Section 5 discusses the Change Aggregation Tree 
(CAT). Section 6 presents the collaborative CAT 
detection algorithm. Section 7 reports the NS-2 
simulation setups and performance results. Section 8 
elaborates on cross-domain DDoS defense. Finally, 
we conclude with a summary of contributions and 
discuss further work needed.  

2. ISP CORE NETWORK - THE FIRST 
TESTING ENVIRONMENT 
Essentially, the Grids and community networks are 
virtual Organizations (VO) atop the physical Internet 
[11]. VO members share resources based on 

application-specific requirements. The users have 
no control over physical networks applied. In this 
case, the networks used are most likely 
administrated by different ISPs. This adds to the 
complexity in performing collaborative work. 
Previous research suggests that a total solution to 
DDoS attack demands a global-scale defense 
system over the entire Internet [23]. 

Inside a single ISP core network, it is feasible to 
demand the routers to cooperate with each other in 
combating the DDoS attacks, collectively as 
illustrated in Fig.1. We propose a new distributed 
change detection scheme using change aggregation 
tree (CAT). The CAT is based on fast recognition 
of a traffic flow pattern directed towards the victim 
machine.  

The root is the last-hop router to the edge network 
where the victim machine is attached. Each tree 
node corresponds to an attack-transit router 
(ATR). Each tree edge corresponds to the link 
between the ATRs. The system administrator 
ensures all routers work cooperatively. The CAT 
server in Fig.1 knows the topology of the network. 
Legitimate traffic patterns are not featured with the 
directionality and convergence characteristics. 
Therefore, once a CAT pattern is recognized 
beyond certain threshold, we have detected the 
very early-stage of a DDoS flooding attack.  

 
Figure 1. Collaborative change detection of DDoS 
flooding attacks by routers within a single ISP 
domain. The attack-transit routers work together to 
collect traffic anomaly information. A central CAT 
server aggregates the alerts and performs risk 
analysis to detect DDoS attacks in real time. 

The whole DDoS detection scheme is designed to 
perform collection, dissemination, and fusion of 
attack information. The ATRs are in charge of 
information collection, whereas the CAT server 

Router 
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processes information collected. Periodically, routers 
compare the short-term behaviors with historical 
averages. In case a current traffic volume far exceeds 
the average, an alert packet is sent to the CAT server.  

3. FLOODING PATTERNS OF DDOS  
ATTACKS 
A DDoS attack deploys multiple attacking entities to 
deny legitimate application from obtaining a service. 
The DDoS attacks overwhelm the target host and 
associated network links with extraordinary huge 
amount of packets that the victims are incapable to 
handle. Legitimate traffic is simply blocked. Such 
brute force attacks do not rely on particular network 
protocols or system weakness.  

As shown in Fig. 2, the attacker simply exploits the 
huge resource asymmetry between the Internet and 
the victim. The magnitude of the increased traffic is 
large enough to crash the victim machine by resource 
exhaustion, or jam its Internet connection by 
bandwidth exhaustion, or both Therefore, DDoS 
attacks can effectively take the victim off the 
Internet. To avoid being caught by trace back 
techniques, attackers launch attacks using spoofed IP 
addresses form innocent victims. 

 
Figure 2. Traffic pattern of a typical DDoS attack. 

To overwhelm the victim, DDoS flows converge 
toward the victim host. Therefore, we can observe 
abnormal traffic volume changes on routers along the 
paths of aggregation. The spatio-temporal traffic 
pattern tends to form a tree rooted the last- hop router 
to the edge network where the victim resides. By 
recognizing such tree-like attack patterns at each end 
router, we can detect the DDoS attacks. 

At the early stage of DDoS attack, the abnormal 
changes are not obvious at each router due to the 

huge data rate in the core network. Meanwhile, 
routers cannot afford to monitor traffic on flow or 
packet level. We define a traffic flow by a set of 
packets satisfying a 5-tuple qualifier: {source IP 
address, destination IP address, source port, 
destination port, protocol applied} during a given 
observation window. Thus, such a flow is 
observable by the router.  

We monitor the traffic at a level above the flow 
level. We define a term super flow to cover all 
packets sharing the same n bit prefix in their 
destination IP address. In addition, the CAT 
detection result does not need to specify any 
threshold in advance. The duty of individual router 
is to monitor the short-term deviation from long-
term average behavior. Once certain abnormal 
change in propagation and aggregation pattern is 
recognized, the local pattern is sent to a CAT 
server where the statistic fusion is performed.  

4. PRINCIPLES OF CHANGE  
DETECTION  
Routers monitor all flows at each interface and 
count the incoming and outgoing packet number 
per time slot. If there is abnormal increase of 
incoming rate on a flow, the router will check the 
pattern of change propagation. We define the 
abnormality of a traffic increase using a deviation 
from the average (DFA) to differentiate abnormal 
short-term behavior from normal long-term 
behavior. We adopt weighted running average to 
describe the long-term behavior.  

For a given super flow, let x(t, i) be the number of 
packets during time slot t coming in by port i and 

),( itX  be the average number of packets, then the 
DFA and the historical average is computed by: 

                ),(),(),( itXitxitDFAin =                 (1) 

   ),(),1()1(),( itxitXitX ⋅+−⋅−= αα               (2) 

Where 0 < α < 1. This shows how sensitive is the 
long-term average to current variations. DFAin is 
defined as abnormality in incoming packet number. 
While a DDoS flooding attacks start, the current 
deviation should be noticeably larger than normal 
random fluctuations. If the abnormality level 
exceeds a threshold (e.g. 2.0), it is considered 
suspicious. Similarly, the DFA of outgoing traffic 
is calculated by:  

),(),( itYityDFAout =                   (3) 

),(),1()1(),( ityitYitY ⋅+−⋅−= αα             (4) 
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Where, y(t, i) be the number of packets in time slot t 
leaving by interface i and ),( itY  be the long-term 
average number of packets. DFAout is defined as 
abnormality level of outgoing packet number. With 
routing table, routers know which port the super flow 
goes. Therefore, once a DFAin at port iin is considered 
suspicious, the outgoing port iout is easily identified. 

Attack pattern is characterized by the Deviation Ratio 
(DR) and Offset Ratio (OR) between the DFAs at the 
input and output ports of each router. DR specifies 
the deviation from the average of a super flow at 
input port iin and output port iout. OR describes the 
ratio of absolute volume of abnormal changes passed 
through the router from iin to iout. 

        )()(),( ininoutoutoutin iDFAiDFAiiDR =             (5) 

        
),(),(
),(),(),(

inin

outout
outin itXitx

itYityiiOR
−
−

=                   (6) 

Different combinations of DR and OR indicate 
different patterns of anomaly propagation and 
aggregations. Figure 3 illustrates the scenarios of 
how abrupt changes propagate through a router and 
the aggregation patterns may be looks like. Three of 
them characterize suspicious traffic flow patterns 
resulted from DDoS flooding attacks. 

  
(a) Scenario #1:  

DR ≈ 1 and OR ≈ 1 
(b) Scenario #2:  

DR < 1 and OR ≈ 1 

  
(c) Scenario #3:  

DR ≈ 1 and OR > 1 
(d) Scenario #4:  

DR < 1 and OR < 1 

Figure 3. Scenarios of changes in traffic aggregation  
                at attack-transit routers 

a. DR ≈ 1 and OR ≈ 1: The flow cuts through the router. 
The router essentially forwards all increased traffic as 
shown in Fig. 3(a). 

b. DR < 1 and OR ≈ 1: The outgoing flow merges 
multiple incoming flows, but not all incoming flows 
contain abnormally increased packets. As all of them 
are forwarded out through port iout, this is a partial 
aggregation pattern (Fig. 2(b)); 

c. DR ≈ 1 and OR > 1: The outgoing flow merges 
multiple incoming flows, each incoming flow 
contains abnormal increases with same deviation 
rate and they aim at the same destination. The router 
is a merge point on the attacking path and it is a full 
aggregation pattern (Fig. 2(c)); 

d. DR < 1 and OR < 1: The changes are scattered, so it 
is not part of a DDoS attack (Fig. 2(d)). 

Scenarios i, ii, or iii indicate possible starting of a 
DDoS flooding attack. Similar works are carried 
out in parallel for other flows. The pseudo code of 
the local attack pattern detection is given in 
Algorithm 1 below. However, the detection cannot 
be decided with a few incidences. We need 
aggregate all related traffic information from all 
nearby routers to raise accurate alerts timely. All 
incoming and outgoing packets are identified by 
the time instants and port numbers. The output of 
this algorithm is the alert packets to be sent to the 
central CAT server.  

Algorithm 1:  Attack Pattern Recognition 
Input:   x(t,i): Incoming packet in time slot t at port i 
             y(t,i): Outgoing packet in time slot t at port i 
     ),1( itX − : Average of packet arrivals up to time t-1 at port i 
     ),1( itY − : Average of outgoing packets up to time t-1 at port i 

Output:   Alert packets sent to central CAT server. 

Procedure: 
01: Update historical average of I/O packets in a flow 
02: Calculate DFAin and DFAout using Eqs. (1) and (3) 
03: If DFAin > threshold Then 
04:      Calculate DR and OR using Eqs. (5) and (6) 
05:      If DR ≈ 1 Then 
06:           If OR ≈ 1 Then 
07:               Suspicious pattern detected, alert packet sent; 
08:           Else  if OR > 1 Then 
09:               Suspicious pattern detected, alert packet sent; 
10:           End If 
11:      Else   if DR < 1 AND OR ≈ 1 Then 
12:           Suspicious pattern detected, alert packet sent; 
13:      End If 
14: End If 
 

5. CHANGE AGGREGATION TREES  
While the flooding traffic starts propagating 
towards the victim, routers along the path capture 
the suspicious patterns. Then each router generates 
an alert packet and sends it to the CAT 
construction server, where an alert will be raised 
once a CAT tree is formed. The alert packets report 
where the suspicious pattern are captured, from 
which port(s) abnormal traffic detected, and by 
which port the abnormal traffic is heading.  

Figure 4 illustrates how a CAT tree is constructed 
by an example. While a flooding attack is 
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launched, a router may detect abnormal traffic 
volume increase. Then it generates an alert packet. 
The downstream routers merge the sub-trees. 
Iteratively, the last hop router would have the whole 
CAT constructed. In large ISP networks, once we 
obtained a large enough sub-tree, we can detect the 
start of DDoS flooding even before the attack flows 
reach the victim network. 

 
(a) The scenario of 4 zombies launching DDoS attacks 
        on a victim machine attached to router R0 

 
(b) CAT tree obtained at router R0 

Figure 4. Detecting DDoS flooding attacks using a  
             CAT-based pattern recognition approach 

The CAT-based detection scheme consists of two 
algorithms. One is Algorithm 1 presented in section 4 
for attack pattern recognition at local routers and the 
other for network-wide attack information fusion at 
the CAT server to be specified in section 6.  

The CAT scheme is deployed in the core network 
routers where high data rate and limited resources 
routers can share to perform complicated security 
functions. It is very difficult to set the threshold for 
lack of information of end applications.  

These constraints imply that the collaborative 
distributed detection mechanism has to be 
lightweight with low complexity. Another critical 
requirement is that it has to be adaptive to changes 
in dynamic traffic properties. Our CAT detection 
scheme is adaptive in nature. 

6. COLLABORATIVE CAT 
DETECTION 
Before introducing the attack alert fusion 
algorithm, we specify the alert packets an ATR 
sends to the central CAT server. To indicate the 
location of a suspicious pattern, the router ID has 
to be sent. It is also mandatory to identify the flow 
in which abnormality was observed. The alert 
packet provides the upstream and downstream 
router IDs instead of the port numbers. Since all 
routers are under same authority and work 
cooperatively, each router knows their immediate 
neighbors. Summarized in Table 1, only few 
parameters are required in each alert packet  

Table 1. Flow Parameters in An Alert Packet 

Parameter Brief Definition 
nd_id 
 
fl_id 
up_num 
dn_num 
up_id 
dn_id 

Node ID, where suspicious pattern was 
observed 
Suspicious flow ID  
Number of upstream nodes 
Number of downstream nodes 
Node ID of upstream node 
Node ID of downstream node 

 
The CAT server maintains a graph of the network 
topology. Periodically it tries to construct CAT tree 
in the graph based on collected alert packets. 
Figure 5 presents the flow chart of CAT fusion 
algorithm executed on the CAT server. Starting 
from the node Rmin with minimum ID, CAT server 
takes it as the root node. The server scans through 
upstream child nodes indicated by the up_id and 
the children of a child. This leaf search procedure 
is performed iteratively, until the leaf nodes are 
counted. Hence, a subtree rooted at Rmin is 
completed  

If there is a downstream router Rdn indicated with 
dn_id, we take router Rdn as the new root and router 
Rmin becomes one of Rdn’s children. So the previous 
sub-tree is merged into the tree rooted at Rdn. 
Meanwhile, the leaf search procedure is repeated 
for all upstream routers of root Rdn except Rmin. 
Then we check the downstream router of Rdn and 
repeat what we did on Rdn until the downstream 
router is out of the domain or is pointing to an edge 
network.  
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Figure 5.  Flow chart for on-line CAT construction 
          based on fusion of all alert packets received                  

7. NS-2 SIMULATION RESULTS 
We verified our DDoS detection scheme with results 
from NS-2 simulation experiments [22]. This section 
introduces the experimental setup and reports 
preliminary performance results.  

7.1 Experimental Setup 
To evaluate the performance of our CAT detection 
scheme, we allow variations in three dimensions: test 
topology, background legitimate traffic, and attack 
characteristics. We adopted real ISP topology 
downloaded from the Rocketfuel project website in 
University of Washington [1]. Figure 6 presents one 
typical topology simulated in our experiments. The 
delays (RTTs) between legitimate hosts and victim 
nodes are uniformly distributed in the range of [40 
ms, 200 ms], and the bandwidth is set as 100MB.  

The background traffic is generated according to 
statistical parameters obtained by analyzing the real 
OC48 trace dataset from the CAIDA project [4].  

To provide DDoS attacks flooding flows for our 
research, we studied real-world DDoS attack tool 
Stacheldraht V4 [10]. It is one representative of the 
DDoS attack toolkits that emerged in early 2000. 
Although new toolkits provide more sophisticated 
monitoring and control capabilities, the flood traffic 
generated by Stacheldraht serves our purpose. 
Stacheldraht generates ICMP, UDP, TCP SYN, and 

Smurf attacks. In our simulations, we generated 
flooding attack traffic patterns according to 
Stacheldraht’s behavior. 

 

 
Figure 6. Topology in NS-2 experiments. 

7.2 Performance Evaluation Results 

Before evaluating the performance of our 
collaborative DDoS attack detection scheme, we 
define the basic performance metrics used. Then 
we will discuss the plotted results from 
experiments. 

A. Performance Metrics 

The performance can be evaluated with three 
metrics: detection delay, detection accuracy, and 
false positive rate. All metrics are measured under 
different attacks (TCP flooding, UDP flooding, 
ICMP flooding) with varied attacking traffic rates. 
The average detection time τ measures the time 
interval between the start of a DDoS attack and the 
time the CAT server raise the alarm of attack.  

The detection accuracy is evaluated using three 
metrics, the detection rate Rd, false alarm rate Rfp, 
and receiver operating characteristic (ROC). The 
detection rate is formally defined by: 

     Rd = a / n   (7) 

where a is the number of detected attacks and n is 
the total number of actual attacks. The false 
positive rate measures the ratio of normal traffic 
being wrongly detected as attacks. The formal 
definition is: 

    Rfp = p / m   (8) 

where p is the total number of false positive alarms 
and m is the total number of normal traffic events. 
The ROC curve is adopted to describe the tradeoff 
between the detection rate and false positive rate.  
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B. Simulated Performance Results 

The CAT scheme detects the start of DDoS flooding 
by monitoring the variance in traffic volume, 
collecting all individual suspicious patterns, and 
constructing CAT tree periodically. Here we need to 
decide whether the constructed CAT tree is resulted 
from an actual DDoS attack or merely from random 
traffic fluctuation. 

As discussed in section 4, the initial attack pattern of 
a flooding DDoS offense and random traffic 
fluctuations may be confused at local router level. 
The difference lies in the observation that the random 
fluctuations do not propagate a long distance. They 
do not show the flow directionality and homing 
convergence properties in the aggregation process. 
We observed that random fluctuations only lead to a 
smaller CAT tree with a short height and limited 
number of leaf nodes.  

Hence, we need to specify a threshold tree size that 
implies a true flooding attack. Simply put, we use the 
sum of leaf count and tree height to assess the size of 
a CAT tree. This size sets a detection threshold of the 
DDOS attacks. The threshold value is determined by 
the network topology and training experiences. The 
higher is the threshold, the more accuracy is 
expected, which means more difficult to achieve 
higher detection rate. Formally, we define the CAT 
detection threshold by: 

                     � = c + d                      (9) 
where c is the leaf count and d is the tree height.  

Figure 7 plots the variances of the detection rate 
(Eq.7) and the false positive rate (Eq.8) with respect 
to different CAT tree sizes as a detection threshold. 
The tree size is obviously sensitive to the topology of 
the network. The message being conveyed here is 
that in most cases the CAT tree incurred with traffic 
fluctuation is restricted by a threshold less than 5.  

 
Figure 7. Detection performance plotted against  
                 the detection threshold (CAT tree size) 

Under a threshold of 5, the detection rate Rd is 
almost 100% for sure but accompanied by some 
false alarms. Since random fluctuation cannot 
sustain the test to form a large CAT tree, when a 
high Rd of 95% is maintained at threshold 5 the 
false alarm rate Rfp drops quickly from 70% to 
zero. As the threshold increase to a higher value of 
10, the detection rate can be still maintained at 
75% level.  

In our simulation, we have studied the relationship 
between the detection threshold and the traffic rate 
experienced by ATRs. In a highly distributed 
DDoS flooding attack, where traffic rate of 
experienced by individual router is pretty low. The 
flooding situation is not detected until multiple 
streams aggregate and cause noticeable changes. 

Figure 8 plots effects on the threshold value by 
variation traffic rate experienced by the ATRs. The 
level of flooding is directly related to this measure. 
When the traffic rate is low, a small CAT tree may 
suffice to distinguish the attacking traffic from the 
regular traffic patterns. As the traffic rate increases 
or when the flooding level mounts, the threshold 
chosen must also increase steadily.  

 
Figure 8. Variation of detection threshold with  

           respect to changes in traffic rate.  

However, eventually the threshold value becomes 
saturated. Further, the more zombies are involved, 
the higher is the threshold value chose. Generally, 
after traffic rate of greater than 1 MB/s, both 
threshold curves become saturated. That means we 
have a more stable detection threshold to use, when 
the DDoS flooding reaches sufficiently high level 
as seen in Fig.8. 

Surely we want to capture attacks at the highest 
achievable accuracy, but the false positive alert 
may also increase with the detection rate. The false 
alarms will incur additional system overhead, since 
false alarms trigger unnecessary but costly 
countermeasures. The ROC curve shown in Fig.9 
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reveals that our CAT based detection scheme can 
reach a detection rate as high as 95% with less than 
1% of false positive rate. This result is very 
encouraging in proving the effectiveness of the 
collaborative CAT defense system.  

 
Figure 9.  ROC curves showing the tradeoff between 
                 detection rate and false positive rate. 

 
Another critical issue is how quickly can we detect 
the launch of DDoS attacks from large number of 
zombies. Since we update the CAT tree at all ATRs, 
periodically, the time delay may incur with the 
updating of the CAT server with frequent local 
changes detected by individual ATRs. The CAT 
server may also need some processing time, if large 
number of servers are involved. We estimate that 
updating in every half second is needed. Any delay 
longer than 0.5 second may not be tolerable.  

8. MULTI-DOMAIN DDOS ATTACK 
DETECTION 
We need to extend the scale of CAT-based DDoS 
detection to multiple network domains. Inter-domain 
communication is thus needed in the alert 
aggregation process. The CAT aggregation algorithm 
must be extended to perform wide-area network 
anomaly detection. We must reach agreement to 
resolve conflicts between security policies applied in 
different domains.  

The routers at various domains exchange alert 
packets under agreed terms. The idea of cross-
domain DDoS defense is illustrated in Fig.10. 
Multiple CAT servers at different AS domains must 
be protected by dedicated VPN channels among 
them. The alert packets generated by ISP routers 
from different domains may follow different policies 
and data formats. Multiple CAT servers must work 
together to resolve the conflicts.  

In follow-up research, we have to reveal the 
messaging overheads involved in cross-domain 
communications. One can establish VPN links or 
structured overlay networks to support cross-
domain alert packet exchanges. This demands 
special policies to share security information. 

 

Figure 10.  Multiple CAT servers in several ISP  
                 domains communicating  with each other  
                 to resolve the conflicts in security policies 

We will reveal the performance attributes tied to 
policy fusion methodology applied. It was 
suggested to approach the policy conflict problem 
through trust negation [5]. Our prior work [7] on 
collaborative detection and filtering of shrew 
DDoS attacks [17] can be extended to combat 
flooding DDoS attacks across multiple ISP 
administrative domains  

9. CONCLUSIONS AND FURTHER 
WORK  
The complexity of DDoS attack patterns grows 
fast, as new network vulnerability is identified and 
more sophisticated attack tools are available. There 
is no magic that can handle all types of DDoS 
attacks. The shared sources in collaboration Grids 
and community networks are especially prone to 
such attacks. One solution works well in a given 
network environment but may fail in other 
networks. In this section, we summarize our 
contributions and then discuss security assurance, 
system scalability, and limitations of our CAT 
DDoS detection system. 

9.1 Concluding Remarks 

This paper reports our work in detection of DDoS 
flooding attacks against Grid resource sites or hot-
spot servers in community networks. It is essential 
to detect DDoS attacks sufficiently early before 
harms are done to legitimate applications. Our 
major contributions are summarized below: 

Certificate 
Authority 

VPN Channel 

ISP

ISP
ISP

ISP 

Routers 
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(A). Early detection of DDoS Flooding Wave: Based 
on spatio-temporal pattern of an anomaly detected in 
an ISP network, our change aggregation tree can 
detect a DDoS flooding attack early at its outbreak. 
This novel approach captures the abrupt changes at 
the starting of a wave of DDoS flooding directed 
towards the victim.  

(B). Deployment in ISP Core Networks: Our 
detection scheme is implementable in the routers 
used in an ISP core network under the same 
authority. Simulation results supported the claimed 
advantages. Issues and solutions to extend the CAT 
scheme across multiple ISP domains are discussed.  

(C). Tradeoffs between Detection Rate and False 
Alarm Tolerance: We verified the effectiveness of 
our detection scheme through intensive simulation 
experiments. The results indicated that the system is 
capable of detecting flooding DDoS attacks swiftly 
with a high detection rate and low false positive rate. 
This accuracy is yet to be tested further with 
deployed prototype and benchmark experiments in 
the future. 

9.2 Discussions and Further Work 

Malicious attackers can hide local anomalies or send 
false attack pattern to the CAT server. These false 
alarms can break the CAT tree construction process. 
We can make the CAT construction more robust by 
introducing a verification function. Having the 
network topology, the CAT server is capable of 
making up the single lost point or rectifying the false 
patterns according to upstream and downstream 
patterns. Isolated attackers can be quarantined by this 
chained protection scheme.  

If multiple compromised routers send false attack 
patterns collectively, the CAT server can be deceived 
to construct the wrong pattern. Attackers can exploit 
this weak point to launch DDOS attacks on the 
victim. Theoretically speaking, once an intruder gain 
full control over multiple routers, she can do 
whatever she wants. Our CAT based detection 
system does not create new weakness. This problem 
is wide open and not solved yet. 

It is a considerable challenge to discriminate DDoS 
flooding attacks from sudden increases in legitimate 
traffic or flash events [6][16]. When flash crowd 
happens, the CAT server may create a similar tree. 
Actually, when there are no more changes to be 
detected, it becomes harder to segregate flash crowd 
flows from DDoS flooding flows. This is especially 
true in highly distributed attacks in which each 
individual flow occupies a normal bandwidth share.  

For further effort, we suggest to separate flash 
crowd from DDoS flooding by other performance 
metrics to capture their differences. The candidate 
ideas include the use of source IP addresses counts 
or packet content matching. A more efficient 
technique is yet to be developed to cope with this 
situation to meet the real time detection 
requirement.  

Furthermore, we suggested extending the CAT-
based DDoS detection scheme across the network 
domain boundary. Efficient and effective 
techniques are needed to resolve policy conflicts 
applied at different domains [15]. Multiple CAT 
servers must work together to resolve the conflicts. 
In addition, a secure and reliable communication 
platform is necessary for routers at different 
domains to exchange alert packets under negotiated 
policy agreement. This opens up more research 
problems to solve. 
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