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Abstract— Multi-tenancy is one of the most attractive features 

of cloud computing, which provides significant benefits to both 

clients and service providers by supporting elastic, efficient, 

and on-demand resource provisioning and allocation. 

However, this architecture also introduces additional security 

implications. Client Virtual Machine (VM) instances running 

on the same physical machine are susceptible to side-channel 

and escape-to-hypervisor attacks. The timely prevention of 

intrusive behavior and malicious processes using signature 

based intrusion detection technologies, or system call level 

anomaly analysis is a very challenging task due to a high rate 

of false alarms. In this work, a behavioral modeling scheme is 

proposed to audit the behaviors of client VMs and to detect 

suspicious processes on the highest semantic level. Our 

preliminary results have validated the effectiveness and 

efficiency of this novel approach.  

Keywords-Cloud Security Auditing (CSA), Multi-Tenancy, 

Behavioral Modeling, Suspicious Process Detection 

I.  INTRODUCTION 

Cloud computing is a new computing paradigm that 
possesses many favorable features such as transparent 
service, good scalability and elasticity, supporting the pay-
as-you-go service model, and omni-accessibility [3]. This 
paradigm not only enables users to enjoy convenient, 
versatile, and efficient services, but also relieves the burden 
of maintenance. One of the defining characteristics of cloud 
computing is multi-tenancy: a hardware/software 
architecture in which a single server provides services to 
multiple clients through virtual, rather than physical, 
partitioning. Multi-tenancy provides significant benefits both 
to clients, through elastic on-demand resource provisioning, 
and to service providers, through more efficient resource 
allocation. 

Multi-tenancy architecture also introduces additional 
security implications. For example, client Virtual Machine 
(VM) instances running on the same physical machine are 
susceptible to side-channel [15, 19, 24] and escape-to-
hypervisor attacks [18]. The success of such attacks will 
compromise the confidentiality of user information including 
data and operations. Researchers have demonstrated that 
modern complex malwares can successfully exploit multi-
tenancy for information stealing, even on modern highly 
dynamic and unpredictable, Symmetric Multiprocessing 
Platforms (SMP) [15, 19, 24]. 

An efficient Cloud Security Auditing (CSA) mechanism 
is highly desired because of the un-trustworthy nature of the 

cloud computing environment. On one hand, it is critical for 
service providers to catch runtime attacks launched by 
malicious users; on the other hand, an attestable hypervisor 
will reduce clients’ security concerns. In addition, a well 
maintained auditing log provides sufficient evidence when a 
disputation arises between service provider and clients, or 
among clients.  

Timely detection and mitigation of such attacks becomes 
imperative to both cloud service providers and clients. 
Failure to protect user data confidentiality violates the 
interests of service providers, harming their reputation and 
leading to eventual financial losses. From the clients’ 
perspective, lack of trust in the cloud environment 
necessitates the capability to monitor the status of mission 
critical applications or processes that have been outsourced 
to the cloud in a transparent manner. 

The most popular malware detection schemes are still 
dominated by the binary signature-based approach. Although 
it has many practical advantages, this technology can be 
evaded by using automatic tools including code packers and 
metamorphic engines, and leads to a dead end due to an 
exponentially growing database of binary signatures. In 
addition, it is inherently incapable of addressing targeted, 
zero-day malware attacks not represented by a binary sample 
in the database.  

Behavioral analysis offers a more promising approach to 
malware detection because behavioral signatures are more 
obfuscation resilient than binary ones. Indeed, changing 
behavior while preserving the desired malicious functions of 
a program is much harder than changing only the binary 
structure. More importantly, to achieve its goal, malware 
usually has to perform some system operations (e.g. registry 
manipulation). Since system operations can be easily 
observed and are difficult to obfuscate or hide, malicious 
programs are more likely to expose themselves to behavioral 
detection. Consequently, while a database of specific 
behavioral signatures is still to be utilized, its size and rate of 
increase are significantly lower than those in the case of 
binary signatures.  

In this paper, we propose a novel behavior modeling 
based CSA scheme. This technology is well aligned with the 
cloud computing environment and the behavior monitoring 
function module can be flexibly deployed either in the 
hypervisor or client VM level. The hypervisor level 
implementation enables the service provider to monitor all 
OS level system calls in all virtual machines. In contrast, 
deployment in the OS kernel of client VMs allows each 



 

client to audit the working status of the assigned VM, the 
execution of user application programs, and the detection 
suspicious processes. A private cloud computing platform 
has been built and Gephi graph visualization software [25] 
utilized, which allows us to show system call data in real 
time and visualize previously captured and saved trace files. 
The results are very encouraging. 

The rest of this paper is organized as follows. Section II 
gives a brief survey of the recent achievement in cloud 
auditing. Section III discusses the threat model in the cloud 
computers. Section IV introduces the principle of our 
behavioral modeling based cloud auditing technology. The 
experimental results and some discussions are reported in 
Section V, and Section VI concludes this paper with our 
ongoing work. 

II. RELATED WORK 

The reported CSA schemes can be divided into two 
categories: data security auditing, which keeps track of 
accesses and operations on stored data, and software security 
auditing, which focuses on suspicious activities monitoring 
and logging. 

A. Auditing for Data Integrity 

Juels and Kaliski [9] proposed a sentinel-based scheme 
which they called a Proof Of Retrievability (POR) for 
archived files. The major computation work happens in the 
client side. The file F is applied an error-correction code and 
encrypted before pre-defined number of sentinels are 
embedded. The new file with sentinels is then permutated 
and sent to the server. The advantage of this protocol is the 
server cannot delete any block and pretend that it possess the 
whole file because it doesn’t know which blocks are 
sentinels. The down side, of course is that the client can only 
challenge the server limited number of times. This fatal limit 
makes the protocol not suitable for services that require 
flexible verification and frequent modifications. 

Ateniese et al. [1] first proposed the concept of Provable 
Data Possession (PDP), a statistical scheme based on 
homomorphic verifiable tags. In order to achieve 95% 
confidence that the server possesses the client’s data, the 
client only needs to check 300 blocks, while checking 460 
blocks is sufficient to guarantee 99% confidence. 

Shacham and Waters [17] proposed two extended POR 
schemes, with private and public verifiability respectively. 
The main advantage of SW PORs is the unlimited number of 
queries. The private verification scheme, based on Pseudo-
Random Functions (PRFs), has the shortest response of any 
POR scheme (20 bytes) with the cost of a longer query. The 
second scheme used short signatures introduced by Boneh, 
Lynn and Shacham (BLS) [4] to verify the authentication of 
data in a remote server, hence assuring secure public 
verifiability. At an 80-bit security level, this scheme has the 
shortest query (20 bytes) and response (40 bytes) of any 
POR scheme. 

Although both schemes almost followed the same 
framework, SW-PORs are more robust than PDP. Each file 
block is further divided into s sections and s random values 
are chosen for the generating and checking proof. This 

strategy increases the security and computation complexity. 
In addition, a file tag has been introduced, which is verified 
in each audit phase. This file tag includes random values for 
a check proof algorithm, the number of blocks, as well as 
cryptographic keys or other random values as a file 
identifier.  

While PORs and PDPs mainly focus on static, archival 
storage, Dynamic Provable Data Possession (DPDP) 
schemes [5] have been suggested to meet the requirements of 
dynamic data access applications. In dynamic access, there 
are data updating transactions such as inserting, modifying, 
or deleting blocks or files. The DPDP schemes are able to 
verify file possession under these situations. 

Cloud servers are shared by multiple users, thus multiple 
verifications for different files often happen. Taking 
advantage of aggregation property of bilinear signature 
scheme, extended verification schemes have been proposed 
to meet the challenge [20, 22]. Feng et al. [6] proposed a 
non-repudiation protocol that enables a fair, secure data 
transmission procedure by allowing peers exchange 
messages and non-repudiation evidence. A Trusted Third 
Party (TTP) is introduced, which plays the role of an arbiter 
when disputation happens if the sender fails to obtain non-
repudiation evidence. 

B. Auditing for Suspicious Software Activities 

Figure 1 illustrates a layered hierarchy of a typical VM 
based cloud server. Each guest OS is separated from other 
VMs and authenticated by a Trusted Platform Module 
(TPM) on the physical machine. A hypervisor in the 
virtualization layer is constantly monitoring activities 
through different virtual machines and their OSs. In order to 
protect user application executions, a normal approach of 
CSA solutions is integrating, monitoring, or logging modules 
into a higher privileged software level, such as hypervisors 
or micro-kernels.  

Figure 1.  Virtual Machine Platform on Cloud Servers. 

Wang et al. [21] proposed HyperCheck, a hardware-
assisted monitor for hypervisor integrity protection. 
Leveraging the CPU System Management Mode (SMM), 
HyperCheck takes snapshot of a complete view of the 
machine, which includes the entire memory and CPU 
registers, and transmits the snapshot to a remote analyzer. An 
alert will be generated if suspicious changes are caught in 
registers or memory snapshots. While the HyperCheck 



protects VM integrity, the lack of capacity for detecting 
dynamic data tampering makes it unsatisfactory in the cloud 
computing environment. The time interval between two 
consecutive snapshots is determined by the SMM NIC data 
rate [21]. This makes HyperCheck vulnerable to transient 
attack [7]. 

There are several other hardware based hypervisor or 
VM integrity auditing schemes similar to HyperCheck. 
Copilot [14] employed a special PCI device to poll the 
physical memory of the machine and send it to an 
administration station periodically. The inconsistency 
between the code executing on the PCI device and the 
system prevents the PCI device from accessing the CPU 
state. This opens a door for some attacks [16]. Hyperguard 
[23] also uses SMM of the x86 CPU to monitor the integrity 
of the hypervisors. However, compared to HyperCheck, 
which transmits the state snapshot to remote analyzer, the 
performance of HyperGuard is decreased when the system is 
busy as all processing tasks are conducted locally. Such a 
weakness also makes HyperGuard vulnerable to Denial of 
Service (DoS) attacks [21]. 

Researchers have also developed TPM-based solutions 
that provide a minimum Trusted Code Base (TCB), such as 
Flicker [12], TrustVisor [11], and Hypersentry [2]. 
Consisting of hardware, firmware, and software components, 
the TCB can detect authorized modification to the OS 
kernels. Flicker and TrustVisor require advanced hardware 
features, for example, Dynamic Root of Trust Management 
(DRTM) and late launch. They have high overhead and also 
vulnerable to scrubbing attacks [7]. In contrast, Hypersentry 
depends on an out-of-band channel and is triggered by a 
System Management Interrupt (SMI) on the target platform. 
Hypersentry is not immune to transient attacks [7]. 

Recently, Houlihan and Du [7] proposed a secure 
auditing scheme that is able to prevent transient attacks. 
Besides modifying the Linux auditing daemon to generate a 
hash of each audit log entry, this scheme integrates SMM 
and TPM to achieve integrity check and attestable security. 
This scheme achieved low overhead according to the 
experimental results. One potential issue is that the 
attestation process uses a remote integrity verification 
system. The performance and security of the entire system 
are closely related to the security of the communication 
network. 

Our behavioral modeling based CSA scheme is different 
from these reported solutions in three aspects: 

• Comparing to those periodically triggered snapshot 
taking methods, our scheme provides a real-time, un-
interrupted monitoring solution, which is able to 
catch dynamic data tampering attacks and be 
immune to transient attacks; 

• Instead of an abstract image of registers and memory 
that is not easily understandable to human operators; 
our system will show system call data in real time 
and visualize previously captured trace files. 

• Our behavioral analysis module can be flexibly 
deployed at either the hypervisor or VM layer. This 
implies that not only the service providers, but 

individual clients can adopt our scheme focusing on 
specific interested user applications. 

III. THREAT MODEL 

Typically, attacks against computing devices in a cloud 
platform, including servers, personal computers, laptops, and 
mobile devices, can aim at different levels: software, 
hardware, and service providers. Potential threats can be 
divided into six categories similar to Open Mobile Terminal 
Platform [13] and Open and Secure Terminal Initiative 
(OSTI) [8]: 

• Software modification threats: Logical threats that 
aim to modify software of user equipment. 

• Software opportunistic threats: Threats that take 
advantage of weaknesses in the execution of 
software on the user equipment while exposing 
sensitive information. 

• External hardware threats: Threats and breaches that 
can be introduced via ports or peripherals of the 
physical system. 

• Terminal intrusive hardware threats: The treat of an 
attacker physically probing exposed circuitry of 
printed circuit boards of the physical hardware 
including removal of components for offline attacks. 

• Component invasive hardware threats: Threats and 
attacks that affect the integrity of physical 
components including integrated circuits, memory 
and printed circuit boards. 

• Cloning, component replacement and addition: 
Threats that are introduced with the replacement of a 
component in the physical equipment such as 
integrated circuits, memory and printed circuit 
boards as well as copies of the physical equipment. 

By monitoring system calls of processes running on each 
VM, the proposed behavioral modeling based CSA scheme 
aims to address the software-oriented threats in categories i) 
and ii). 

IV. BEHAVIORAL MODELING BASED CLOUD 

SECURITY AUDITING 

The main goal of the behavior modeling based CSA 
scheme is to identify and report malicious behavior in cloud 
computers. The behavior refers to the actions performed by 
the programs with respect to their environment. While the 
complete list of malicious actions is quite extensive a 
substantial part of the list can be legitimate depending on the 
environment.  

Information sharing/leaking can be legitimate for 
authorized programs or malicious for unauthorized ones. File 
hosting functionality is legitimate in most cases but can be 
malicious depending on the environment and file type. As 
one may see, it is hard to define the malicious behavior. Very 
often it depends on the context and the original intent of the 
software designer. Therefore, the program behavior should 
be formalized from the point of view of the original intent of 
the program writer. The behavior should also be actualized to 
the current environment where the program operates. 



 

Consequently, the challenge of behavioral detection is in 
devising a good model of behavior which is descriptive 
enough to allow for the discrimination between benign and 
malicious programs and which can be tuned to the target 
environment. 

A. Behavioral Representation 

The environment of any program in the computer system 
is controlled and managed by the operating system kernel. 
For example, the Windows OS organizes the program 
environment using well known objects including: file, 
memory section, thread, mutex. If the process needs to sense 
or modify these objects it has to request the OS to do so by 
making a system call. However, working with system calls 
unnecessarily complicates the task of application developers. 
Windows subsystem libraries offer more friendly, well 
documented APIs that provide programs with the ability to 
interact with OS objects. Nonetheless, these APIs still 
execute system calls. Therefore, monitoring the system calls 
is the ideal way to observe a program’s behavior. System call 
monitoring provides a reliable and in many cases 
incorruptible source of raw behavior-carrying data for 
functionality recognition. 

 

Figure 2.  System call graph for the kernel32.CreatProcess. 

The behavioral representation at the level of system calls 
may vary widely depending on the implementation. 
Moreover because system calls lie at the bottom of the API 
hierarchy it may lead to very complex and verbose 
manifestations of the functionalities. One Windows 
subsystem API call may translate into hundreds of system 
calls. For example, CreateProcess from kernel32.dll may 
expand into a sequence of hundreds of system calls, whose 
full graph is presented in Figure 2. It features more than 372 
system calls and 399 links between them. Clearly there is no 
easy way for an expert to recognize functionality from the 
raw system call traces. 

In order to determine the behavior and detect anomalous 
changes in the behavior, a vertex-edge labeled graph model 

is proposed that allows us to capture the normal structure of 
operations over OS objects. Each vertex corresponds to a 
system call, and any two vertices are connected by an edge if 
they share a parameter. The graph can be built from the 
stream of system calls.  

For example, calls S1, S2 in Figure 3(a) have a common 
parameter C. In the resulting graph in Figure 3(b) nodes 
corresponding to calls S1, S2 are connected with the directed 
edge C. Nodes S2, S3 are connected with an edge labeled C. 

It is worth noting that the set of system calls is small and 
well known. The set of all possible values of parameters of 
system calls is unknown beforehand and very extensive. 
Fortunately, this does not pose a difficult problem because 
the majority of the important parameters take values from a 
small subset. 

Figure 3.  Illustration of Behavior Graph Construction. 

B. Behavioral Auditing based on Functionality Detection 

As illustrated in Figure 2 and Figure 3, the behavior 
representation at the level of system calls does not offer 
auditors or system administrators a convenient means for the 
timely assessment of hypervisor and client VMs operation. 
Therefore, the concept of functionality is introduced to 
formalize a program’s behavior. A functionality can be 
understood as a set of operations serving nontrivial tangible 
goals in the digital environment. Then, the process of CSA 
can be accomplished in two stages.  

The first stage is the detection of implemented 
functionalities, which actually are behavioral patterns. This 
stage is independent of the context and properties of the 
monitored computer system. At this point we only reveal 
what types of functionalities are executed by the programs in 
the system. 

The second stage tags sets of functionalities as malicious 
or benign in the current environment. At this stage, 
functionalities are attributed to malicious or benign domains 
using current knowledge of the context and execution 
environment. This stage takes into account contextual 
information to classify the set of detected functionalities as 
benign or malicious. 



The core of our functionality monitor is built on the 
Colored Petri Net (CPN) [10] simulator, which consists of 
several components: 

• System call interposition driver wiretaps on all 
data passing the kernel boundary by means of 
system calls. Accumulated data is sent to user mode 
for analysis.  

• Low level CPN engine is part of the interposition 
driver. It performs assembly of more complex events 
from the stream of system calls.  

• User mode data parser receives serialized data 
from the kernel-mode driver and transforms the data 
into more usable form. 

• User mode API interposition library wiretaps on 
API calls. It cross-checks with driver provided data 
and accelerated testing of new functionally 
signatures. 

• Event fusion library accepts events from different 
sources and routes it to proper places in the CPN 
simulator.  

• CPN simulator is the core of functionality 
detection. It simulates CPNs with data provided by 
kernel mode interposition driver and API 
interposition library. 

• Graph builder assembles graphs out of the data 
obtained from the system call interposition driver. 

With the functionality monitor, a profile of normal 
program operations can be constructed. Such types of 
functionalities possess high discriminative power against 
malicious software. Therefore, the functionality profiles are 
ideal for behavior based auditing system that prevents 
intrusions and timely detects suspicious processes. 

Following the anomaly detection paradigm, our CSA 
system can be built in two phases: the training phase and the 
detection phase. During the training phase we intercept and 
analyze a stream of system calls for a sufficient time period 
to cover the majority of normal system operations. This data 
is then used to model normal behavior of the system. During 
the detection phase we observe the stream of system calls 
and detect any deviation from the previously defined 
“normal” behavior model. Most information attacks, even 
the majority of obfuscated ones, exhibit anomalous behavior 
and is detected as such. 

Our behavior modeling approach operates on the highest 
level of behavioral semantics, the level of functionalities, 
where behavior is directly associated with the specific goals 
of the software developer. 

C. Behavioral Modeling based Cloud Security Auditing  

We envision a virtual machine-based OS system as 
shown in the Figure 1. This system separates user 
applications according to different job responsibilities. Each 
guest OS is separated from other VMs and authenticated by a 
TPM on the physical machine. A hypervisor in the 
virtualization layer is constantly monitoring activities 
through different VMs and their OSs.  

For the personal applications, a user can decide if he/she 
wants to turn on the TPM software for protecting privacy. 

The hypervisor is able to create partitions within the 
resources of the system. The operating systems can then be 
isolated in such a way so that individual OS’s have isolated 
access to only their own resources or files. OSs can even 
completely encapsulate an operating system allowing 
portability. 

Service providers can embed the system call monitoring 
and analysis module into the hypervisor, where all VMs are 
monitored. At this point monitored system calls are 
assembled into functionalities representing facets of system 
behavior. These functionalities can be used to verify that the 
user software exhibits expected behavior.  

TABLE I.  HADOOP FUNCTIONAL PROFILE 

Node 1 Node 2 Node 3 Node 4 Idle 

Trace Length(S) 66034 63331 63193 63175 14334 

# System Calls 23.4e6 13.5e6 13.4e6 13.4e6 9.4e6 

# Functionalities 102 93 98 100 21 

 
Figure 4.  Stabilization of the normalcy profile size. 

V. EXPERIMENTAL STUDY 

A proof-of-concept prototype built at Binghamton 
University consists of a small scale cloud platform and a 
software suite capable of capturing functionalities. This 
section reports on the deployment of our behavioral 
modeling based CSA scheme and some preliminary 
experimental results. 

To confirm that our CSA scheme is capable of extracting 
a stable functional normalcy profile by processing a long 
continuous stream of system calls data, we monitored an 
idling cloud node. The results are presented in Figure 4, 
where the Y-axis illustrates the total number of distinct 
functionalities captured into the normalcy profile, and the X-
axis represents the number of system calls processed. With 
time, graphs tend to flatten thus showing that the normalcy 
profile converges to a certain size, which represents all 
functionality exercised by the system. 

To confirm that a functional normalcy profile can be used 
to verify that the user software exhibits expected behavior 
we ran four Hadoop [27] nodes with similar load (Table 1). 
From the table one may see that the system under load 
exhibits additional functionalities. Figure 5 shows that our 



functionality detector is able to capture additional system 
behaviors as they are executed by an application. 

Additional tests were run to demonstrate that the same 
application executes previously identified functionalities. By 
matching functionalities found in different profiles for the 
same application one may identify any discrepancies. We 
compared the Node 1 profile against Node 2, 3 and 4 and 
found zero discrepancies. 

The next stage of the experimentation, currently in 
progress, involves the deployment of typical attacks 
observed in the cloud environment, including "low and slow" 
attacks, and their detection utilizing the described 
technology. 

 

Figure 5.  Number of unique functionalities executed by an application. 

VI. CONCLUSIONS 

We proposed a novel approach to audit programs 
executing in cloud computers and detects suspicious 
processes in VMs. This behavioral analysis scheme offers an 
obfuscation resilient solution to malware detection. 
Particularly, it can be flexibly deployed to satisfy the 
requirements of service providers and individual clients.  

This paper discusses the rationales and principles of our 
scheme along with some preliminary experimental studies 
conducted on a concept proof prototype. The experiment 
results are very encouraging. Currently, we are extending our 
private cloud into a mobile cloud computing platform. 
Further experiments will be conducted to investigate the 
performance, robustness, and design tradeoffs both on the 
servers and mobile devices, e.g. Nexus 7 tablets and smart 
phones. 
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