
Cloud Security Auditing based on Behavioral Modeling

Zachary Birnbaum, Bingwei Liu, Andrey Dolgikh, Yu Chen, Victor Skormin

Dept. of Electrical and Computer Engineering

Binghamton University

Binghamton, NY USA

{zbirnba1, bliu, adolgik1, ychen, vskormin}@binghamton.edu

Abstract— Multi-tenancy is one of the most attractive features

of cloud computing, which provides significant benefits to both

clients and service providers by supporting elastic, efficient,

and on-demand resource provisioning and allocation.

However, this architecture also introduces additional security

implications. Client Virtual Machine (VM) instances running

on the same physical machine are susceptible to side-channel

and escape-to-hypervisor attacks. The timely prevention of

intrusive behavior and malicious processes using signature

based intrusion detection technologies, or system call level

anomaly analysis is a very challenging task due to a high rate

of false alarms. In this work, a behavioral modeling scheme is

proposed to audit the behaviors of client VMs and to detect

suspicious processes on the highest semantic level. Our

preliminary results have validated the effectiveness and

efficiency of this novel approach.

Keywords-Cloud Security Auditing (CSA), Multi-Tenancy,

Behavioral Modeling, Suspicious Process Detection

I. INTRODUCTION

Cloud computing is a new computing paradigm that
possesses many favorable features such as transparent
service, good scalability and elasticity, supporting the pay-
as-you-go service model, and omni-accessibility [3]. This
paradigm not only enables users to enjoy convenient,
versatile, and efficient services, but also relieves the burden
of maintenance. One of the defining characteristics of cloud
computing is multi-tenancy: a hardware/software
architecture in which a single server provides services to
multiple clients through virtual, rather than physical,
partitioning. Multi-tenancy provides significant benefits both
to clients, through elastic on-demand resource provisioning,
and to service providers, through more efficient resource
allocation.

Multi-tenancy architecture also introduces additional
security implications. For example, client Virtual Machine
(VM) instances running on the same physical machine are
susceptible to side-channel [15, 19, 24] and escape-to-
hypervisor attacks [18]. The success of such attacks will
compromise the confidentiality of user information including
data and operations. Researchers have demonstrated that
modern complex malwares can successfully exploit multi-
tenancy for information stealing, even on modern highly
dynamic and unpredictable, Symmetric Multiprocessing
Platforms (SMP) [15, 19, 24].

An efficient Cloud Security Auditing (CSA) mechanism
is highly desired because of the un-trustworthy nature of the

cloud computing environment. On one hand, it is critical for
service providers to catch runtime attacks launched by
malicious users; on the other hand, an attestable hypervisor
will reduce clients’ security concerns. In addition, a well
maintained auditing log provides sufficient evidence when a
disputation arises between service provider and clients, or
among clients.

Timely detection and mitigation of such attacks becomes
imperative to both cloud service providers and clients.
Failure to protect user data confidentiality violates the
interests of service providers, harming their reputation and
leading to eventual financial losses. From the clients’
perspective, lack of trust in the cloud environment
necessitates the capability to monitor the status of mission
critical applications or processes that have been outsourced
to the cloud in a transparent manner.

The most popular malware detection schemes are still
dominated by the binary signature-based approach. Although
it has many practical advantages, this technology can be
evaded by using automatic tools including code packers and
metamorphic engines, and leads to a dead end due to an
exponentially growing database of binary signatures. In
addition, it is inherently incapable of addressing targeted,
zero-day malware attacks not represented by a binary sample
in the database.

Behavioral analysis offers a more promising approach to
malware detection because behavioral signatures are more
obfuscation resilient than binary ones. Indeed, changing
behavior while preserving the desired malicious functions of
a program is much harder than changing only the binary
structure. More importantly, to achieve its goal, malware
usually has to perform some system operations (e.g. registry
manipulation). Since system operations can be easily
observed and are difficult to obfuscate or hide, malicious
programs are more likely to expose themselves to behavioral
detection. Consequently, while a database of specific
behavioral signatures is still to be utilized, its size and rate of
increase are significantly lower than those in the case of
binary signatures.

In this paper, we propose a novel behavior modeling
based CSA scheme. This technology is well aligned with the
cloud computing environment and the behavior monitoring
function module can be flexibly deployed either in the
hypervisor or client VM level. The hypervisor level
implementation enables the service provider to monitor all
OS level system calls in all virtual machines. In contrast,
deployment in the OS kernel of client VMs allows each

client to audit the working status of the assigned VM, the
execution of user application programs, and the detection
suspicious processes. A private cloud computing platform
has been built and Gephi graph visualization software [25]
utilized, which allows us to show system call data in real
time and visualize previously captured and saved trace files.
The results are very encouraging.

The rest of this paper is organized as follows. Section II
gives a brief survey of the recent achievement in cloud
auditing. Section III discusses the threat model in the cloud
computers. Section IV introduces the principle of our
behavioral modeling based cloud auditing technology. The
experimental results and some discussions are reported in
Section V, and Section VI concludes this paper with our
ongoing work.

II. RELATED WORK

The reported CSA schemes can be divided into two
categories: data security auditing, which keeps track of
accesses and operations on stored data, and software security
auditing, which focuses on suspicious activities monitoring
and logging.

A. Auditing for Data Integrity

Juels and Kaliski [9] proposed a sentinel-based scheme
which they called a Proof Of Retrievability (POR) for
archived files. The major computation work happens in the
client side. The file F is applied an error-correction code and
encrypted before pre-defined number of sentinels are
embedded. The new file with sentinels is then permutated
and sent to the server. The advantage of this protocol is the
server cannot delete any block and pretend that it possess the
whole file because it doesn’t know which blocks are
sentinels. The down side, of course is that the client can only
challenge the server limited number of times. This fatal limit
makes the protocol not suitable for services that require
flexible verification and frequent modifications.

Ateniese et al. [1] first proposed the concept of Provable
Data Possession (PDP), a statistical scheme based on
homomorphic verifiable tags. In order to achieve 95%
confidence that the server possesses the client’s data, the
client only needs to check 300 blocks, while checking 460
blocks is sufficient to guarantee 99% confidence.

Shacham and Waters [17] proposed two extended POR
schemes, with private and public verifiability respectively.
The main advantage of SW PORs is the unlimited number of
queries. The private verification scheme, based on Pseudo-
Random Functions (PRFs), has the shortest response of any
POR scheme (20 bytes) with the cost of a longer query. The
second scheme used short signatures introduced by Boneh,
Lynn and Shacham (BLS) [4] to verify the authentication of
data in a remote server, hence assuring secure public
verifiability. At an 80-bit security level, this scheme has the
shortest query (20 bytes) and response (40 bytes) of any
POR scheme.

Although both schemes almost followed the same
framework, SW-PORs are more robust than PDP. Each file
block is further divided into s sections and s random values
are chosen for the generating and checking proof. This

strategy increases the security and computation complexity.
In addition, a file tag has been introduced, which is verified
in each audit phase. This file tag includes random values for
a check proof algorithm, the number of blocks, as well as
cryptographic keys or other random values as a file
identifier.

While PORs and PDPs mainly focus on static, archival
storage, Dynamic Provable Data Possession (DPDP)
schemes [5] have been suggested to meet the requirements of
dynamic data access applications. In dynamic access, there
are data updating transactions such as inserting, modifying,
or deleting blocks or files. The DPDP schemes are able to
verify file possession under these situations.

Cloud servers are shared by multiple users, thus multiple
verifications for different files often happen. Taking
advantage of aggregation property of bilinear signature
scheme, extended verification schemes have been proposed
to meet the challenge [20, 22]. Feng et al. [6] proposed a
non-repudiation protocol that enables a fair, secure data
transmission procedure by allowing peers exchange
messages and non-repudiation evidence. A Trusted Third
Party (TTP) is introduced, which plays the role of an arbiter
when disputation happens if the sender fails to obtain non-
repudiation evidence.

B. Auditing for Suspicious Software Activities

Figure 1 illustrates a layered hierarchy of a typical VM
based cloud server. Each guest OS is separated from other
VMs and authenticated by a Trusted Platform Module
(TPM) on the physical machine. A hypervisor in the
virtualization layer is constantly monitoring activities
through different virtual machines and their OSs. In order to
protect user application executions, a normal approach of
CSA solutions is integrating, monitoring, or logging modules
into a higher privileged software level, such as hypervisors
or micro-kernels.

Figure 1. Virtual Machine Platform on Cloud Servers.

Wang et al. [21] proposed HyperCheck, a hardware-
assisted monitor for hypervisor integrity protection.
Leveraging the CPU System Management Mode (SMM),
HyperCheck takes snapshot of a complete view of the
machine, which includes the entire memory and CPU
registers, and transmits the snapshot to a remote analyzer. An
alert will be generated if suspicious changes are caught in
registers or memory snapshots. While the HyperCheck

protects VM integrity, the lack of capacity for detecting
dynamic data tampering makes it unsatisfactory in the cloud
computing environment. The time interval between two
consecutive snapshots is determined by the SMM NIC data
rate [21]. This makes HyperCheck vulnerable to transient
attack [7].

There are several other hardware based hypervisor or
VM integrity auditing schemes similar to HyperCheck.
Copilot [14] employed a special PCI device to poll the
physical memory of the machine and send it to an
administration station periodically. The inconsistency
between the code executing on the PCI device and the
system prevents the PCI device from accessing the CPU
state. This opens a door for some attacks [16]. Hyperguard
[23] also uses SMM of the x86 CPU to monitor the integrity
of the hypervisors. However, compared to HyperCheck,
which transmits the state snapshot to remote analyzer, the
performance of HyperGuard is decreased when the system is
busy as all processing tasks are conducted locally. Such a
weakness also makes HyperGuard vulnerable to Denial of
Service (DoS) attacks [21].

Researchers have also developed TPM-based solutions
that provide a minimum Trusted Code Base (TCB), such as
Flicker [12], TrustVisor [11], and Hypersentry [2].
Consisting of hardware, firmware, and software components,
the TCB can detect authorized modification to the OS
kernels. Flicker and TrustVisor require advanced hardware
features, for example, Dynamic Root of Trust Management
(DRTM) and late launch. They have high overhead and also
vulnerable to scrubbing attacks [7]. In contrast, Hypersentry
depends on an out-of-band channel and is triggered by a
System Management Interrupt (SMI) on the target platform.
Hypersentry is not immune to transient attacks [7].

Recently, Houlihan and Du [7] proposed a secure
auditing scheme that is able to prevent transient attacks.
Besides modifying the Linux auditing daemon to generate a
hash of each audit log entry, this scheme integrates SMM
and TPM to achieve integrity check and attestable security.
This scheme achieved low overhead according to the
experimental results. One potential issue is that the
attestation process uses a remote integrity verification
system. The performance and security of the entire system
are closely related to the security of the communication
network.

Our behavioral modeling based CSA scheme is different
from these reported solutions in three aspects:

• Comparing to those periodically triggered snapshot
taking methods, our scheme provides a real-time, un-
interrupted monitoring solution, which is able to
catch dynamic data tampering attacks and be
immune to transient attacks;

• Instead of an abstract image of registers and memory
that is not easily understandable to human operators;
our system will show system call data in real time
and visualize previously captured trace files.

• Our behavioral analysis module can be flexibly
deployed at either the hypervisor or VM layer. This
implies that not only the service providers, but

individual clients can adopt our scheme focusing on
specific interested user applications.

III. THREAT MODEL

Typically, attacks against computing devices in a cloud
platform, including servers, personal computers, laptops, and
mobile devices, can aim at different levels: software,
hardware, and service providers. Potential threats can be
divided into six categories similar to Open Mobile Terminal
Platform [13] and Open and Secure Terminal Initiative
(OSTI) [8]:

• Software modification threats: Logical threats that
aim to modify software of user equipment.

• Software opportunistic threats: Threats that take
advantage of weaknesses in the execution of
software on the user equipment while exposing
sensitive information.

• External hardware threats: Threats and breaches that
can be introduced via ports or peripherals of the
physical system.

• Terminal intrusive hardware threats: The treat of an
attacker physically probing exposed circuitry of
printed circuit boards of the physical hardware
including removal of components for offline attacks.

• Component invasive hardware threats: Threats and
attacks that affect the integrity of physical
components including integrated circuits, memory
and printed circuit boards.

• Cloning, component replacement and addition:
Threats that are introduced with the replacement of a
component in the physical equipment such as
integrated circuits, memory and printed circuit
boards as well as copies of the physical equipment.

By monitoring system calls of processes running on each
VM, the proposed behavioral modeling based CSA scheme
aims to address the software-oriented threats in categories i)
and ii).

IV. BEHAVIORAL MODELING BASED CLOUD

SECURITY AUDITING

The main goal of the behavior modeling based CSA
scheme is to identify and report malicious behavior in cloud
computers. The behavior refers to the actions performed by
the programs with respect to their environment. While the
complete list of malicious actions is quite extensive a
substantial part of the list can be legitimate depending on the
environment.

Information sharing/leaking can be legitimate for
authorized programs or malicious for unauthorized ones. File
hosting functionality is legitimate in most cases but can be
malicious depending on the environment and file type. As
one may see, it is hard to define the malicious behavior. Very
often it depends on the context and the original intent of the
software designer. Therefore, the program behavior should
be formalized from the point of view of the original intent of
the program writer. The behavior should also be actualized to
the current environment where the program operates.

Consequently, the challenge of behavioral detection is in
devising a good model of behavior which is descriptive
enough to allow for the discrimination between benign and
malicious programs and which can be tuned to the target
environment.

A. Behavioral Representation

The environment of any program in the computer system
is controlled and managed by the operating system kernel.
For example, the Windows OS organizes the program
environment using well known objects including: file,
memory section, thread, mutex. If the process needs to sense
or modify these objects it has to request the OS to do so by
making a system call. However, working with system calls
unnecessarily complicates the task of application developers.
Windows subsystem libraries offer more friendly, well
documented APIs that provide programs with the ability to
interact with OS objects. Nonetheless, these APIs still
execute system calls. Therefore, monitoring the system calls
is the ideal way to observe a program’s behavior. System call
monitoring provides a reliable and in many cases
incorruptible source of raw behavior-carrying data for
functionality recognition.

Figure 2. System call graph for the kernel32.CreatProcess.

The behavioral representation at the level of system calls
may vary widely depending on the implementation.
Moreover because system calls lie at the bottom of the API
hierarchy it may lead to very complex and verbose
manifestations of the functionalities. One Windows
subsystem API call may translate into hundreds of system
calls. For example, CreateProcess from kernel32.dll may
expand into a sequence of hundreds of system calls, whose
full graph is presented in Figure 2. It features more than 372
system calls and 399 links between them. Clearly there is no
easy way for an expert to recognize functionality from the
raw system call traces.

In order to determine the behavior and detect anomalous
changes in the behavior, a vertex-edge labeled graph model

is proposed that allows us to capture the normal structure of
operations over OS objects. Each vertex corresponds to a
system call, and any two vertices are connected by an edge if
they share a parameter. The graph can be built from the
stream of system calls.

For example, calls S1, S2 in Figure 3(a) have a common
parameter C. In the resulting graph in Figure 3(b) nodes
corresponding to calls S1, S2 are connected with the directed
edge C. Nodes S2, S3 are connected with an edge labeled C.

It is worth noting that the set of system calls is small and
well known. The set of all possible values of parameters of
system calls is unknown beforehand and very extensive.
Fortunately, this does not pose a difficult problem because
the majority of the important parameters take values from a
small subset.

Figure 3. Illustration of Behavior Graph Construction.

B. Behavioral Auditing based on Functionality Detection

As illustrated in Figure 2 and Figure 3, the behavior
representation at the level of system calls does not offer
auditors or system administrators a convenient means for the
timely assessment of hypervisor and client VMs operation.
Therefore, the concept of functionality is introduced to
formalize a program’s behavior. A functionality can be
understood as a set of operations serving nontrivial tangible
goals in the digital environment. Then, the process of CSA
can be accomplished in two stages.

The first stage is the detection of implemented
functionalities, which actually are behavioral patterns. This
stage is independent of the context and properties of the
monitored computer system. At this point we only reveal
what types of functionalities are executed by the programs in
the system.

The second stage tags sets of functionalities as malicious
or benign in the current environment. At this stage,
functionalities are attributed to malicious or benign domains
using current knowledge of the context and execution
environment. This stage takes into account contextual
information to classify the set of detected functionalities as
benign or malicious.

The core of our functionality monitor is built on the
Colored Petri Net (CPN) [10] simulator, which consists of
several components:

• System call interposition driver wiretaps on all
data passing the kernel boundary by means of
system calls. Accumulated data is sent to user mode
for analysis.

• Low level CPN engine is part of the interposition
driver. It performs assembly of more complex events
from the stream of system calls.

• User mode data parser receives serialized data
from the kernel-mode driver and transforms the data
into more usable form.

• User mode API interposition library wiretaps on
API calls. It cross-checks with driver provided data
and accelerated testing of new functionally
signatures.

• Event fusion library accepts events from different
sources and routes it to proper places in the CPN
simulator.

• CPN simulator is the core of functionality
detection. It simulates CPNs with data provided by
kernel mode interposition driver and API
interposition library.

• Graph builder assembles graphs out of the data
obtained from the system call interposition driver.

With the functionality monitor, a profile of normal
program operations can be constructed. Such types of
functionalities possess high discriminative power against
malicious software. Therefore, the functionality profiles are
ideal for behavior based auditing system that prevents
intrusions and timely detects suspicious processes.

Following the anomaly detection paradigm, our CSA
system can be built in two phases: the training phase and the
detection phase. During the training phase we intercept and
analyze a stream of system calls for a sufficient time period
to cover the majority of normal system operations. This data
is then used to model normal behavior of the system. During
the detection phase we observe the stream of system calls
and detect any deviation from the previously defined
“normal” behavior model. Most information attacks, even
the majority of obfuscated ones, exhibit anomalous behavior
and is detected as such.

Our behavior modeling approach operates on the highest
level of behavioral semantics, the level of functionalities,
where behavior is directly associated with the specific goals
of the software developer.

C. Behavioral Modeling based Cloud Security Auditing

We envision a virtual machine-based OS system as
shown in the Figure 1. This system separates user
applications according to different job responsibilities. Each
guest OS is separated from other VMs and authenticated by a
TPM on the physical machine. A hypervisor in the
virtualization layer is constantly monitoring activities
through different VMs and their OSs.

For the personal applications, a user can decide if he/she
wants to turn on the TPM software for protecting privacy.

The hypervisor is able to create partitions within the
resources of the system. The operating systems can then be
isolated in such a way so that individual OS’s have isolated
access to only their own resources or files. OSs can even
completely encapsulate an operating system allowing
portability.

Service providers can embed the system call monitoring
and analysis module into the hypervisor, where all VMs are
monitored. At this point monitored system calls are
assembled into functionalities representing facets of system
behavior. These functionalities can be used to verify that the
user software exhibits expected behavior.

TABLE I. HADOOP FUNCTIONAL PROFILE

Node 1 Node 2 Node 3 Node 4 Idle

Trace Length(S) 66034 63331 63193 63175 14334

System Calls 23.4e6 13.5e6 13.4e6 13.4e6 9.4e6

Functionalities 102 93 98 100 21

Figure 4. Stabilization of the normalcy profile size.

V. EXPERIMENTAL STUDY

A proof-of-concept prototype built at Binghamton
University consists of a small scale cloud platform and a
software suite capable of capturing functionalities. This
section reports on the deployment of our behavioral
modeling based CSA scheme and some preliminary
experimental results.

To confirm that our CSA scheme is capable of extracting
a stable functional normalcy profile by processing a long
continuous stream of system calls data, we monitored an
idling cloud node. The results are presented in Figure 4,
where the Y-axis illustrates the total number of distinct
functionalities captured into the normalcy profile, and the X-
axis represents the number of system calls processed. With
time, graphs tend to flatten thus showing that the normalcy
profile converges to a certain size, which represents all
functionality exercised by the system.

To confirm that a functional normalcy profile can be used
to verify that the user software exhibits expected behavior
we ran four Hadoop [27] nodes with similar load (Table 1).
From the table one may see that the system under load
exhibits additional functionalities. Figure 5 shows that our

functionality detector is able to capture additional system
behaviors as they are executed by an application.

Additional tests were run to demonstrate that the same
application executes previously identified functionalities. By
matching functionalities found in different profiles for the
same application one may identify any discrepancies. We
compared the Node 1 profile against Node 2, 3 and 4 and
found zero discrepancies.

The next stage of the experimentation, currently in
progress, involves the deployment of typical attacks
observed in the cloud environment, including "low and slow"
attacks, and their detection utilizing the described
technology.

Figure 5. Number of unique functionalities executed by an application.

VI. CONCLUSIONS

We proposed a novel approach to audit programs
executing in cloud computers and detects suspicious
processes in VMs. This behavioral analysis scheme offers an
obfuscation resilient solution to malware detection.
Particularly, it can be flexibly deployed to satisfy the
requirements of service providers and individual clients.

This paper discusses the rationales and principles of our
scheme along with some preliminary experimental studies
conducted on a concept proof prototype. The experiment
results are very encouraging. Currently, we are extending our
private cloud into a mobile cloud computing platform.
Further experiments will be conducted to investigate the
performance, robustness, and design tradeoffs both on the
servers and mobile devices, e.g. Nexus 7 tablets and smart
phones.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and

communications security (CCS), pages 598–609, New York, NY,
USA, 2007. ACM.

[2] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, N. C. Skalsky,
“HyperSentry: Enabling Stealthy In-context Measurement of
Hypervisor Integrity,” in Proc. of the 17th ACM Conference on
Computer and Communications Security, pp. 38-49, 2010.

[3] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “NIST special
publication 800-146, draft cloud computing synopsis and

recommendations,” National Institute of Standards and Technology,
2011.

[4] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of Cryptology, 17:297–319, 2004. 10.1007/s00145-
004-0314-9.

[5] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM

conference on Computer and communications security, pp. 213-222.
ACM, 2009.

[6] J. Feng, Y. Chen, and D. Summerville, "A Fair Multi-Party Non-
Repudiation Scheme for Storage Clouds," the 2011 International

Conference on Collaboration Technologies and Systems (CTS 2011),
Philadelphia, PA., USA, May 23 - 27, 2011.

[7] R. Houlihan, and X. Du, “An Effective Auditing Scheme for Cloud
Computing,” in Proc. of IEEE GLOBECOM 2012, Anaheim, CA,
USA, Dec. 2012.

[8] Intel and NTT DoCoMo, “Open and Secure Terminal Initiative
(OSTI) Architecture Specification V1.0,” 2006.

[9] A. Juels and B. S. Kaliski Jr., “Pors: proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and

communications security (CCS), pages 584–597, New York, NY,
USA, 2007. ACM.

[10] L.M. Kristensen, S. Christensen, and K. Jensen, “The practitioner’s
guide to coloured Petri nets,” Int. J. STTT, (1998) 2: 98-132.

[11] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A.
Perrig, “TrustVisor: Efficient TCB reduction and attestation,” in
Proceedings of the IEEE Symposium on Security and Privacy, May
2010.

[12] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki, “Flicker:
an execution infrastructure for TCB minimization,” in Proc. of the

ACM European Conference on Computer Systems (EuroSys),
March/April 2008.

[13] Open Mobile Terminal Platform Alliance, “OMTP Approved
Deliverables,” 2010,http://www.omtp.org/approved.html.

[14] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot - a
coprocessor-based kernel runtime integrity monitor,” in Proc. of the
13th USENIX Security Symposium, pp. 13, 2004.

[15] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party
compute clouds,” In Proceedings of the 16th ACM conference on
Computer and communications security, pp. 199-212. ACM, 2009.

[16] J. Rutkowska, “Beyond the CPU: Defeating Hardware Based RAM
Acquisition Tools,” Blackhat, February 2007.

[17] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Advances in Cryptology - ASIACRYPT 2008.

[18] J. Szefer, E. Keller, R.B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” ACM CCS, 2011.

[19] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M.M.
Swift, “Resource-freeing attacks: improve your cloud performance (at
your neighbor’s expense),”ACM CCS, 2012.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” In INFOCOM,
2010 Proceedings IEEE, pages 1 –9, march 2010.

[21] J. Wang, A. Stavrou, and A. K. Ghosh, “HyperCheck: A
hardwareassisted integrity monitor,” in Proc. of the 13th International

Symposium on Recent Advances in Intrusion Detection (RAID10),
September 2010.

[22] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud
computing,” Parallel and Distributed Systems, IEEE Transactions on,
22(5):847 –859, may 2011.

[23] R. Wojtczuk and J. Rutkowska, “Xen 0wning trilogy,” in Proc. Black
Hat conference, 2008

