

An Extension of RDP Code with Parallel Decoding Procedure

†
Jun Feng,

†
Yu Chen

*
,

†
Douglas Summerville,

‡
Zhou Su

†
State University of New York – Binghamton, Binghamton, NY 13902, USA

‡
Waseda University, Ohkubo 3-4-1, Shinjyuku, Tokyo 169-8555, Japan

Abstract∗– XOR based RAID 6 systems outperform other

RAID systems. Among the XOR (exclusive OR) based

RAID-6 schemes, RDP has better performance than others

by a narrow margin. However, the RDP code scheme cannot

take full advantage of parallel hardware implementation of

XOR codes. In this paper, we propose an extension of the

double–erasure-correcting RDP code called EDP, which

consists of a parallel decoding scheme. Thus, EDP can

improve the decoding velocity of RDP by about 40% without

any change to the current RDP configuration for storage.

Keywords: XOR, Erasure Code, Fault Tolerate, Storage System.

1. Introduction

In modern storage systems, RAID (Redundant Array

of Independent Disks) techniques are known to be the
preferable ones that achieve higher performance and more

reliability. RAID systems protect the data against disk

failures by constructing redundant information and storing

them on an array of hard disks. RAID-6, which can

tolerate two failure-disks, has become more popular.

Some RAID codes have been successfully designed to
recover double storage node failures, including

Reed-Solomon codes, EVEN-ODD [1], Row Diagonal

Parity (RDP) [2] and Liberation codes [5]. X-code [7] an

elegant two-erasure code, is not a RAID code. It does not

meet the RAID-6 specification of having two independent

parity devices, P and Q [5]. A recent examination on the

performance of the codes for RAID-6 had concluded that

special purpose RAID-6 codes vastly outperform their

general purpose counterparts such as Reed-Solomon code,

and RDP performs the best of these by a narrow margin

[6].

However, the RDP code cannot take full advantage of

parallel implementation of the multi-processer. For

example, RDP code can start two iterative procedures at

the beginning, but one of them has to stop quickly when it

hits the block in the “missing” chain.

This paper proposes EDP scheme (an Extension of

RDP). It is an improved decoding method based on RDP.

When implemented in parallel, the decoding velocity of

EDP scheme can be improved by about 40% in theory

* Manuscript submitted on July 8, 2011 to the 9

th
 IEEE Consumer

Communications and Networking Conference (CCNC 2012), Las Vegas,

NV, USA, Jan. 14 – 17, 2012. Corresponding author: Yu Chen, Dept. of

Electrical & Computer Eng., SUNY–Binghamton, Binghamton, NY

13902. E-mail: ychen@binghamton.edu, Tel.: (607) 777-6133, Fax: (607)

777-4464.

without changing any disk configuration for RDP code.

The only additional cost is to recover a missing parity in

one extra step. However, after the step the EDP scheme

can be effectively implemented in parallel on multi-

processer or reconfigurable hardware devices.

The rest of this paper is arranged as follows. Section 2

provides background on RDP code. It focuses on the

decoding algorithm that leads to the EDP scheme. Section

3 gives EDP decoding scheme. Section 4 presents

experimental results. Section 5 concludes the paper.

2. RDP Code

RDP uses the two slopes 0 and 1 to construct the parity

devices P and Q. Figure 1(a) shows how parity blocks on

the P device are created by data blocks, and Figure 1(b)

shows the generation of parity blocks on the Q device. In

Figure 1(b), the yellow colored blocks are imaginary

blocks.

In order to avoid confusion and inconsistency, we

equal “n” to a prime number, the number of data disks is

n-1 by default. If it is less than n-1, we can suppose there

are imaginary data disks to form the n-1 data disks. Each

disk has n-1 blocks. So the storage can be considered at as

n-1 rows × n+1 columns array. One column stands for a

disk. We use “i” to specify the rows and “j” to the
columns. If two disks failed, we mark them as “a” and “b”,

where a < b. We call the set of blocks in one line to

generate parity x the “chain x”. For example, the set of {q0,

p1, d23, d32, d00} is chain q0. There are five parity chains

for the Q device generation, but there are only four parity

blocks in the Q device. Since one of the parity blocks

cannot be stored in the Q device, the corresponding chain

(a) P device construction. (b) Q device construction.

Figure 1. RDP encoding procedure (n=5).

is called the “missing chain”. There is no restriction on

which diagonal should be selected to store parity blocks.

By default, diagonal n−1 is the missing diagonal.

The idea of the decoding process will be illustrated by

an example. Assume that data devices 1 and 3 are erased.

In this example, two starting chains, q0 and q2, can be

found. The two missing blocks d23 and d11 are

reconstructed immediately. Then, the row parity can be

used to recover two more missing blocks d21 and d13 in the

two rows.

Then, because the block d13 lies on the missing chain,

it cannot start the next recovery process. It has to stop.

The remaining failed blocks have to be recovered by

another iterative process one by. Figure 2 illustrates that

the sequence for the recovery procedure.

Figure 2. Illustration of the RDP decoding procedure.

Figure 2 also shows that when one of them hits the
missing parity chain and stops another chain can traverse

the remaining erased data blocks. Since a recovery time

depends on the long chain, if each of the two iterative

processes recovers half of the erased blocks in parallel,

the recovery process can achieve the highest decoding

efficiency. Based on this observation, we proposed the

EDP method that achieves the highest speed by making

each chain recover half of the lost blocks in parallel.

3. EDP Decoding Scheme

EDP decoding scheme can be described as “accelerator

plus the RDP decoding algorithm”. The advantage this

scheme offers is that the current RDP based systems can

be upgraded to the new EDP based systems smoothly

without any change, which is preferable for users.

In this section, an overview of various missing data

scenarios is first introduced, and then the theoretical

foundations of the EDP code are discussed. In subsection

3.3, the detailed EDP decoding algorithm is presented.

Since it is trivial to recover a single failed column, this

section describes how to recover two failed data devices

which is most likely to occur. It is infeasible to recover the

failed blocks separately. The scheme consists of two steps.

Step #1: calculates the accelerator:

2

1
0

n

n i
i

q q
−

−
=

= ⊕ (1)

where qn-1 is the parity of the missing chain.

Step #2: Run the RDP decoding procedure.

Below is a short proof of Equation (1).

Proof:

Let’s define qi= Qi ⊕ pi+1, where Qi is the parity of

the data blocks in the chain. Then, q0 = Q0 ⊕ p1, … qn-1

= Qn-1 ⊕ pn.

Suppose all imaginary data blocks are zero. Then their

parity result pn-1 is zero.
1

0

n

i
i

p
−

=

⊕ is equal to
1

0

n

i
i

Q
−

=

⊕ because

both of them are XOR result of all data blocks. Then:

2 2 1

0 0 1

1 1

1 0 1 0 1
0 0

() ()

() ()

n n n

i i i
i i i

n n

i i n n n
i i

q Q p

Q p Q p Q p q

− − −

= = =

− −

− − −
= =

⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ =

For example, in Figure 1, we have

q0 ⊕ q1 ⊕ q2 ⊕ q3

= Q0 ⊕ p1 ⊕ Q1 ⊕ p2 ⊕ Q2 ⊕ p3 ⊕ Q3 ⊕ p4

= (Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3) ⊕ (p1 ⊕ p2 ⊕ p3 ⊕ p4)

= (Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3 ⊕ Q4)

 ⊕ (p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p0) ⊕ Q4 ⊕ p0

= Q4 ⊕ p0

= q4.

Theorem. Assume there are two columns a and b in the

array, where 0≤a<b≤n-1. The two iterative chains start

from (n-1, a) and (n-1, b) independently, and then take

slope 1 and slope 0 alternatively. Using the same speed,

each of the chains covers half of the lost blocks when they

encounter. The union of the two sequence chains traverses

all the failed blocks and each of them traverse half of the

failed blocks.

Based on the theorem, the two iterative chains will
only encounter in the middle, either of them traverses half

of the failed blocks. Therefore, EDP can improve the

recovery speed in an optimal way. Another advantage of

the EDP algorithm is that each chain can be processed

independently without sharing any information. This is

preferable for parallel programming with multi-core or

hardware implementation.

Due to the limited space, the detailed proof of the

theorem is not included. Interested readers are referred to

our technical report [8].

4. Experiment

There are many factors that influence the performance,

including memory utilization, cache size, CPU speed, disk
type, OS type, data read/write type, word size, thread

priority, and specific coding/decoding algorithm

implementation. The bottleneck can be any one or any

combination of them. It is extremely difficult, if not

impossible, to compare all the combinations.

4.1 Setup

The experimental results could be more persuasive if

the data were read from and written into different disks.

However, in the current RAID systems, the bottleneck is

the disk IO speed which has existed for more than 20

years and beyond our paper’s scope. Moreover, there are
many uncontrolled factors when transferring data between

machines and disks [6]. Our focus is the performance of

the decoding algorithm. Therefore, our experiments have

been conducted in a single machines’ memory, just as was

done in [6]. Otherwise, it would be too difficult to make

the result convincible. Actually, to the best of our

knowledge, there are no such practical experimental

results reported in the literature of any codes including

EVENODD [1], RDP [2], X-code [7], STAR code [4],

Weaver code [3] etc.

Table 1. Machine Configuration.

Brand HP6120t DELL760 HP6340f

Intel CPU E5300 E8400 Q8400

Frequency 2.6GHz 3GHz 2.6GHz

Cores 2 2 4

Memory 3GB 3GB 8GB

L1 Cache 2×32KB 2×32KB 4×32KB

L2 Cache 2MB 6MB 4MB

OS WindowsXP

32-bit

WindowsXP

32-bit

Windows7

64-bit

Since our focus is the performance of the decoding
procedure, the influences of other factors should be

negligible or be reduced to a negligible level. As we only

consider the operation in the memory, for the disk type,

the disk utilization factor is negligible. Regarding the

CPU speed, because the timestamp counter in each core

cannot be guaranteed to be strictly synchronous in a

multi-core platform, the RTDSC (read time stamp counter)

function is not considered accurate, instead, functions

QueryPerformanceCounter() and QueryPerformance

Frequency() are selected to get accurate relative timing to

cancel the speed influence. Three machines with different
configurations were used to conduct comparison

experiments to reduce the influence of the cache size.

Details of the three machines are listed in Table 1.

The program was executed in user space and no other

user programs were executing. For all of the experiments,

each test case ran on the three machines. On each machine,

each test case was also repeated 10 times and the average

results were calculated. Every “repeat” includes “run, exit,

and restart the test program again”. In the experiments, the

memory data transfer and memory XOR operation were

used as a baseline. Then the influence of cache and thread
priority were studied. The performance of the EDP

decoding algorithm has been compared with RDP based

on all the experimental results.

The memcpy() speed and an XOR speed of each

machine have been recorded. For HP6120t, they are 1.24

GB/s and 1.43 GB/s. For DELL760, they are 1.97GB/s,
and 1.67GB/s. For HP6340f, they are 2.22GB/s and

1.54GB/s, respectively. The memory copy speed is

measured by copying 768 MB data from one buffer to

another. XOR speed is measured by the following steps:

• The initial value is 0xaaaaaaaa;

• XOR with the value 0xffffffff in serial directly with 2

million times;

• Loop 100 times.

Figure 3. Top view of memory allocation.

For the following experiment, three buffers were

allocated in memory to simulate data P and Q disks

separately. Data buffer was partitioned into n-1 virtual

disks, and each disk had n-1 blocks. Each parity buffer (P

or Q) was partitioned into n blocks. The high-level view

of the setup is shown in Figure 3.

4.2 Cache

Cache miss impacts the performance significantly. If

the data is not in cache, it has to be fetched from memory

or disk. It leads to extra time cost. Therefore, each data

Figure 4. Decoding Speed on different Cache Size (SP).

block size was expanded from 4B to 4MB with step size

of 16 bytes to measure the influence of cache size. For

convenience, the maximum data disk number was fixed to

13 because of the memory allocation limitation.

Figure 4 shows the EDP performance of the three

machines as the data block size changes. SP (Single-core

Processor) indicates the case when the decoding process

was running on only one processor core. MP (Multi-core

Processor) means that the decoding process was running

on multi-cores in parallel, only two threads can be started

at the same time. MP also implies that the decoding

process is running on two processor cores.

As the data block size increases, the decoding speed

remains within a reasonable range. For small data block

size, the total data buffer is from ten to hundreds bytes.

This leads to inaccurate results because of the cold start of

the program. Due to the combination of inaccurate result

and some initial timing cost, the final result is not precise
for small data block size. In addition, the curve is not

monotonically increasing and strictly stable. The reasons

include cache misses and collisions between cache entries,

which are random and unpredictable.

Figure 5 shows the difference of the SP decoding
speed on other machines compared to that on the HP6120t.

The upper curve shows that the DELL 760 performs the

best since it has the biggest cache size, which implies the

least probability of a cache miss. HP6340 achieved

performance similar to HP6120t.

4.3 Thread Priority

Windows is a time-slotted OS. Thus, for any cores, the

threads or processes are scheduled and executed in

different time slots. Higher priority threads will have a
higher probability of being executed. In order to find the

influence, an SP decoding process was executed with

different priority level. The normal priority level is set to

15 and high priority level is set to 31 by SetPriorityClass()

and SetThreadPriority() functions. The data block size

was set to 128KB, 256KB and 512KB since they can be

divided by 512Byte or 4KB, which is the disk sector size.

The prime number n is changed from 5 to 29.

Figure 6 shows the influence of thread. Three lines for
each machine stand for results with 128KB, 256KB and

512KB data block sizes respectively. It is obvious that the

priority factor does not have much impact on performance

in our environment in the same machine. Based on this, in

the other test cases, we set the priority to the high level.

Figure 6. Thread Priority (EDP).

4.4 Coding and Decoding Performance

After the thread priority and cache analysis, the

decoding performance was compared. Since there were no
open codes for the RDP, we wrote the code according to

reference [3]. Although the results are different from those

in other papers [6] the differences are mainly caused by

the different configurations and optimization methods.

They can be optimized using the same approach and

similar results can be obtained.

The result is shown on Figure 7. Similarly, the data

block size was set to 128, 256, and 512KB. Therefore,

there are three lines which stand for results with 128KB,

256KB and 512KB data block sizes respectively on each

machine. The prime number was in the range from 5 to 29.

Figure 7(a) and 7(b) show the SP and MP decoding speed

of RDP and EDP. MP speed is shown above the legend.

SP speed is shown below the legend. Different blocks

stand for the results on different machines. The figure

confirms that the speed in the multi-core can be faster

than that in the single core.

Figure 7(c) shows the ratio of MP to SP. The ratio of

EDP is close to 2 and that of RDP is close to 1.4. This

means EDP can achieve better performance in MP than

RDP does. In Figure 7(c), no matter what the machine is,

the ratio is almost the same as the ratio is the relative

parameter and the machine factor is cancelled.

Figure 7(d) shows the speedup of EDP over RDP. The

red lines stand for the results on different machines with

128, 256, and 512 KB block sizes. For comparison, the

MatLab simulation result is plotted with the color blue. It

shows that the experiment results match the simulation
quite well. In our experiment, EDP can improve the

decoding speed over RDP by about 40% when the data

disk number is close to 30.

Figure 5. Coding Speed Difference in Different Machine.

(a) Decoding procedure on MP/SP (RDP).

(b) Decoding procedure on MP/SP (EDP).

(c) Ratio of Speed on dual to that on single processor.

(d) Speedup of EDP over RDP.

Figure 7. Performance Comparison.

5. Conclusions

In this paper, we proposed the EDP scheme, which is

an optimal parallel efficient double disk failure recovering

algorithm. The EDP scheme is an extension of the RDP

code, and requires only n-1 iterative recovery steps in its

decoding operations. In comparison with RDP code, the

EDP scheme can significantly reduce the data recovery
time due to the two optimal parallel iterative chains.

Detailed simulations and experiments show that the EDP

scheme has the faster decoding process between the

existing two iterative recovery chain codes.

EDP algorithm is more suitable for parallel

implementation because each thread covers exactly the
same amount of failed nodes with the same speed. Along

with simplicity and flexibility, this property makes the

EDP scheme an ideal candidate for parallel

implementation.

Another advantage of the EDP scheme is that it can be

used in the current RDP based systems smoothly without
any configuration change. Hence, the EDP scheme is very

suitable for achieving high availability in practical data

storage systems.

References

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, "EVENODD:
An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures," IEEE Transactions on Computers
(44:2), 1995, pp. 192-202.

[2] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.
Leong and S.Sankar, “Row-Diagonal Parity for Double

Disk Failure Correction,” Proc.of USENIX FAST 2004,
Mar. 31 to Apr. 2, San Francisco,CA, USA.

[3] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems,” the Fourth USENIX

Conference on File and Storage Technologies (FAST '05)',
pp. 211-224, 2005

[4] C. Huang and L.H. Xu, “STAR: An Efficient Coding
Scheme for Correcting Triple Storage Node Failures,”
IEEE Transactions on Computers, pp. 889-901, 2008

[5] J. S .Plank, “The RAID-6 Liberation Codes,” 6th USENIX

Conference on File and Storage Technologies (FAST ’08),
pp. 97–110, San Jose, CA, Feb., 2008.

[6] J. S .Plank, J. Luo, C. D. Schuman, L. Xu, and Z.
Wilcox-O’Hearn, “A Performance Evaluation and
Examination of Open-Source Erasure Coding Library for
Storage,” 7th USENIX Conference on File and Storage

Technologies (FAST ’09), San Francisco, CA, February,
2009.

[7] L. Xu and J. Bruck, "X-Code: MDS Array Codes with
Optimal Encoding," IEEE Trans. on Information Theory
(45), 1999, pp. 272--276.

[8] J. Feng, Y. Chen, and D. Summerville, “EDP: An
Extension of RDP Code with Optimal Decoding
Procedure,” technical report, Dept. of Electrical and
Computer Engineering, Binghamton University, Dec.

2010.

