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Abstract∗– XOR based RAID 6 systems outperform other 

RAID systems. Among the XOR (exclusive OR) based 

RAID-6 schemes, RDP has better performance than others 

by a narrow margin. However, the RDP code scheme cannot 

take full advantage of parallel hardware implementation of 

XOR codes. In this paper, we propose an extension of the 

double–erasure-correcting RDP code called EDP, which 

consists of a parallel decoding scheme. Thus, EDP can 

improve the decoding velocity of RDP by about 40% without 

any change to the current RDP configuration for storage.  
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1. Introduction 

In modern storage systems, RAID (Redundant Array 

of Independent Disks) techniques are known to be the 
preferable ones that achieve higher performance and more 

reliability. RAID systems protect the data against disk 

failures by constructing redundant information and storing 

them on an array of hard disks. RAID-6, which can 

tolerate two failure-disks, has become more popular. 

Some RAID codes have been successfully designed to 
recover double storage node failures, including 

Reed-Solomon codes, EVEN-ODD [1], Row Diagonal 

Parity (RDP) [2] and Liberation codes [5]. X-code [7] an 

elegant two-erasure code, is not a RAID code. It does not 

meet the RAID-6 specification of having two independent 

parity devices, P and Q [5]. A recent examination on the 

performance of the codes for RAID-6 had concluded that 

special purpose RAID-6 codes vastly outperform their 

general purpose counterparts such as Reed-Solomon code, 

and RDP performs the best of these by a narrow margin 

[6].  

However, the RDP code cannot take full advantage of 

parallel implementation of the multi-processer. For 

example, RDP code can start two iterative procedures at 

the beginning, but one of them has to stop quickly when it 

hits the block in the “missing” chain. 

This paper proposes EDP scheme (an Extension of 

RDP). It is an improved decoding method based on RDP. 

When implemented in parallel, the decoding velocity of 

EDP scheme can be improved by about 40% in theory 
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without changing any disk configuration for RDP code. 

The only additional cost is to recover a missing parity in 

one extra step. However, after the step the EDP scheme 

can be effectively implemented in parallel on multi- 

processer or reconfigurable hardware devices. 

The rest of this paper is arranged as follows. Section 2 

provides background on RDP code. It focuses on the 

decoding algorithm that leads to the EDP scheme. Section 

3 gives EDP decoding scheme. Section 4 presents 

experimental results. Section 5 concludes the paper. 

2. RDP Code 

RDP uses the two slopes 0 and 1 to construct the parity 

devices P and Q. Figure 1(a) shows how parity blocks on 

the P device are created by data blocks, and Figure 1(b) 

shows the generation of parity blocks on the Q device. In 

Figure 1(b), the yellow colored blocks are imaginary 

blocks.  

In order to avoid confusion and inconsistency, we 

equal “n” to a prime number, the number of data disks is 

n-1 by default. If it is less than n-1, we can suppose there 

are imaginary data disks to form the n-1 data disks. Each 

disk has n-1 blocks. So the storage can be considered at as 

n-1 rows × n+1 columns array. One column stands for a 

disk. We use “i” to specify the rows and “j” to the 
columns. If two disks failed, we mark them as “a” and “b”, 

where a < b. We call the set of blocks in one line to 

generate parity x the “chain x”. For example, the set of {q0, 

p1, d23, d32, d00} is chain q0. There are five parity chains 

for the Q device generation, but there are only four parity 

blocks in the Q device. Since one of the parity blocks 

cannot be stored in the Q device, the corresponding chain 

 

(a) P device construction. (b) Q device construction. 

Figure 1. RDP encoding procedure (n=5). 



 

 

is called the “missing chain”. There is no restriction on 

which diagonal should be selected to store parity blocks. 

By default, diagonal n−1 is the missing diagonal. 

The idea of the decoding process will be illustrated by 

an example. Assume that data devices 1 and 3 are erased. 

In this example, two starting chains, q0 and q2, can be 

found. The two missing blocks d23 and d11 are 

reconstructed immediately. Then, the row parity can be 

used to recover two more missing blocks d21 and d13 in the 

two rows. 

Then, because the block d13 lies on the missing chain, 

it cannot start the next recovery process. It has to stop. 

The remaining failed blocks have to be recovered by 

another iterative process one by. Figure 2 illustrates that 

the sequence for the recovery procedure. 

 

Figure 2. Illustration of the RDP decoding procedure. 

Figure 2 also shows that when one of them hits the 
missing parity chain and stops another chain can traverse 

the remaining erased data blocks. Since a recovery time 

depends on the long chain, if each of the two iterative 

processes recovers half of the erased blocks in parallel, 

the recovery process can achieve the highest decoding 

efficiency. Based on this observation, we proposed the 

EDP method that achieves the highest speed by making 

each chain recover half of the lost blocks in parallel. 

3. EDP Decoding Scheme 

EDP decoding scheme can be described as “accelerator 

plus the RDP decoding algorithm”. The advantage this 

scheme offers is that the current RDP based systems can 

be upgraded to the new EDP based systems smoothly 

without any change, which is preferable for users.  

In this section, an overview of various missing data 

scenarios is first introduced, and then the theoretical 

foundations of the EDP code are discussed. In subsection 

3.3, the detailed EDP decoding algorithm is presented. 

Since it is trivial to recover a single failed column, this 

section describes how to recover two failed data devices 

which is most likely to occur. It is infeasible to recover the 

failed blocks separately. The scheme consists of two steps.  

Step #1: calculates the accelerator: 

2

1
0

n

n i
i

q q
−

−
=

= ⊕  (1) 

where qn-1 is the parity of the missing chain. 

Step #2: Run the RDP decoding procedure. 

Below is a short proof of Equation (1). 

Proof:  

Let’s define qi= Qi ⊕  pi+1, where Qi is the parity of 

the data blocks in the chain. Then, q0 = Q0 ⊕  p1, … qn-1 

= Qn-1 ⊕  pn.  

Suppose all imaginary data blocks are zero. Then their 

parity result pn-1 is zero. 
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both of them are XOR result of all data blocks. Then: 
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For example, in Figure 1, we have  

q0 ⊕  q1 ⊕  q2 ⊕  q3 

= Q0 ⊕  p1 ⊕  Q1 ⊕  p2 ⊕  Q2 ⊕  p3 ⊕  Q3 ⊕  p4  

= (Q0 ⊕  Q1 ⊕  Q2 ⊕  Q3) ⊕  (p1 ⊕  p2 ⊕  p3 ⊕  p4)  

= (Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3 ⊕ Q4)  

 ⊕  (p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p0) ⊕  Q4 ⊕  p0  

= Q4 ⊕  p0  

= q4. 

Theorem. Assume there are two columns a and b in the 

array, where 0≤a<b≤n-1. The two iterative chains start 

from (n-1, a) and (n-1, b) independently, and then take 

slope 1 and slope 0 alternatively. Using the same speed, 

each of the chains covers half of the lost blocks when they 

encounter. The union of the two sequence chains traverses 

all the failed blocks and each of them traverse half of the 

failed blocks. 

Based on the theorem, the two iterative chains will 
only encounter in the middle, either of them traverses half 

of the failed blocks. Therefore, EDP can improve the 

recovery speed in an optimal way. Another advantage of 

the EDP algorithm is that each chain can be processed 

independently without sharing any information. This is 

preferable for parallel programming with multi-core or 

hardware implementation.  

Due to the limited space, the detailed proof of the 

theorem is not included. Interested readers are referred to 

our technical report [8]. 

4. Experiment 

There are many factors that influence the performance, 

including memory utilization, cache size, CPU speed, disk 
type, OS type, data read/write type, word size, thread 



 

 

priority, and specific coding/decoding algorithm 

implementation. The bottleneck can be any one or any 

combination of them. It is extremely difficult, if not 

impossible, to compare all the combinations. 

4.1 Setup 

The experimental results could be more persuasive if 

the data were read from and written into different disks. 

However, in the current RAID systems, the bottleneck is 

the disk IO speed which has existed for more than 20 

years and beyond our paper’s scope. Moreover, there are 
many uncontrolled factors when transferring data between 

machines and disks [6]. Our focus is the performance of 

the decoding algorithm. Therefore, our experiments have 

been conducted in a single machines’ memory, just as was 

done in [6]. Otherwise, it would be too difficult to make 

the result convincible. Actually, to the best of our 

knowledge, there are no such practical experimental 

results reported in the literature of any codes including 

EVENODD [1], RDP [2], X-code [7], STAR code [4], 

Weaver code [3] etc. 

Table 1. Machine Configuration. 

Brand HP6120t DELL760 HP6340f 

Intel CPU E5300 E8400 Q8400 

Frequency 2.6GHz 3GHz 2.6GHz 

Cores 2 2 4 

Memory 3GB 3GB 8GB 

L1 Cache 2×32KB 2×32KB 4×32KB 

L2 Cache 2MB 6MB 4MB 

OS WindowsXP 

32-bit 

WindowsXP 

32-bit 

Windows7 

64-bit 

Since our focus is the performance of the decoding 
procedure, the influences of other factors should be 

negligible or be reduced to a negligible level. As we only 

consider the operation in the memory, for the disk type, 

the disk utilization factor is negligible. Regarding the 

CPU speed, because the timestamp counter in each core 

cannot be guaranteed to be strictly synchronous in a 

multi-core platform, the RTDSC (read time stamp counter) 

function is not considered accurate, instead, functions 

QueryPerformanceCounter() and QueryPerformance 

Frequency() are selected to get accurate relative timing to 

cancel the speed influence. Three machines with different 
configurations were used to conduct comparison 

experiments to reduce the influence of the cache size. 

Details of the three machines are listed in Table 1.  

The program was executed in user space and no other 

user programs were executing. For all of the experiments, 

each test case ran on the three machines. On each machine, 

each test case was also repeated 10 times and the average 

results were calculated. Every “repeat” includes “run, exit, 

and restart the test program again”. In the experiments, the 

memory data transfer and memory XOR operation were 

used as a baseline. Then the influence of cache and thread 
priority were studied. The performance of the EDP 

decoding algorithm has been compared with RDP based 

on all the experimental results. 

The memcpy() speed and an XOR speed of each 

machine have been recorded. For HP6120t, they are 1.24 

GB/s and 1.43 GB/s. For DELL760, they are 1.97GB/s, 
and 1.67GB/s. For HP6340f, they are 2.22GB/s and 

1.54GB/s, respectively. The memory copy speed is 

measured by copying 768 MB data from one buffer to 

another. XOR speed is measured by the following steps: 

• The initial value is 0xaaaaaaaa; 

• XOR with the value 0xffffffff in serial directly with 2 

million times; 

• Loop 100 times. 

 

Figure 3. Top view of memory allocation. 

For the following experiment, three buffers were 

allocated in memory to simulate data P and Q disks 

separately. Data buffer was partitioned into n-1 virtual 

disks, and each disk had n-1 blocks. Each parity buffer (P 

or Q) was partitioned into n blocks. The high-level view 

of the setup is shown in Figure 3. 

4.2 Cache 

Cache miss impacts the performance significantly. If 

the data is not in cache, it has to be fetched from memory 

or disk. It leads to extra time cost. Therefore, each data 

 

Figure 4. Decoding Speed on different Cache Size (SP). 



 

 

block size was expanded from 4B to 4MB with step size 

of 16 bytes to measure the influence of cache size. For 

convenience, the maximum data disk number was fixed to 

13 because of the memory allocation limitation. 

Figure 4 shows the EDP performance of the three 

machines as the data block size changes. SP (Single-core 

Processor) indicates the case when the decoding process 

was running on only one processor core. MP (Multi-core 

Processor) means that the decoding process was running 

on multi-cores in parallel, only two threads can be started 

at the same time. MP also implies that the decoding 

process is running on two processor cores. 

As the data block size increases, the decoding speed 

remains within a reasonable range. For small data block 

size, the total data buffer is from ten to hundreds bytes. 

This leads to inaccurate results because of the cold start of 

the program. Due to the combination of inaccurate result 

and some initial timing cost, the final result is not precise 
for small data block size. In addition, the curve is not 

monotonically increasing and strictly stable. The reasons 

include cache misses and collisions between cache entries, 

which are random and unpredictable. 

Figure 5 shows the difference of the SP decoding 
speed on other machines compared to that on the HP6120t. 

The upper curve shows that the DELL 760 performs the 

best since it has the biggest cache size, which implies the 

least probability of a cache miss. HP6340 achieved 

performance similar to HP6120t. 

4.3 Thread Priority 

Windows is a time-slotted OS. Thus, for any cores, the 

threads or processes are scheduled and executed in 

different time slots. Higher priority threads will have a 
higher probability of being executed. In order to find the 

influence, an SP decoding process was executed with 

different priority level. The normal priority level is set to 

15 and high priority level is set to 31 by SetPriorityClass() 

and SetThreadPriority() functions. The data block size 

was set to 128KB, 256KB and 512KB since they can be 

divided by 512Byte or 4KB, which is the disk sector size. 

The prime number n is changed from 5 to 29.  

Figure 6 shows the influence of thread. Three lines for 
each machine stand for results with 128KB, 256KB and 

512KB data block sizes respectively. It is obvious that the 

priority factor does not have much impact on performance 

in our environment in the same machine. Based on this, in 

the other test cases, we set the priority to the high level. 

 

Figure 6. Thread Priority (EDP). 

4.4 Coding and Decoding Performance 

After the thread priority and cache analysis, the 

decoding performance was compared. Since there were no 
open codes for the RDP, we wrote the code according to 

reference [3]. Although the results are different from those 

in other papers [6] the differences are mainly caused by 

the different configurations and optimization methods. 

They can be optimized using the same approach and 

similar results can be obtained. 

The result is shown on Figure 7. Similarly, the data 

block size was set to 128, 256, and 512KB. Therefore, 

there are three lines which stand for results with 128KB, 

256KB and 512KB data block sizes respectively on each 

machine. The prime number was in the range from 5 to 29. 

Figure 7(a) and 7(b) show the SP and MP decoding speed 

of RDP and EDP. MP speed is shown above the legend. 

SP speed is shown below the legend. Different blocks 

stand for the results on different machines. The figure 

confirms that the speed in the multi-core can be faster 

than that in the single core.  

Figure 7(c) shows the ratio of MP to SP. The ratio of 

EDP is close to 2 and that of RDP is close to 1.4. This 

means EDP can achieve better performance in MP than 

RDP does. In Figure 7(c), no matter what the machine is, 

the ratio is almost the same as the ratio is the relative 

parameter and the machine factor is cancelled.  

Figure 7(d) shows the speedup of EDP over RDP. The 

red lines stand for the results on different machines with 

128, 256, and 512 KB block sizes. For comparison, the 

MatLab simulation result is plotted with the color blue. It 

shows that the experiment results match the simulation 
quite well. In our experiment, EDP can improve the 

decoding speed over RDP by about 40% when the data 

disk number is close to 30. 

 

Figure 5. Coding Speed Difference in Different Machine. 



 

 

 

(a) Decoding procedure on MP/SP (RDP). 

 
(b) Decoding procedure on MP/SP (EDP). 

 
(c) Ratio of Speed on dual to that on single processor. 

 
(d) Speedup of EDP over RDP. 

Figure 7. Performance Comparison. 

5. Conclusions 

In this paper, we proposed the EDP scheme, which is 

an optimal parallel efficient double disk failure recovering 

algorithm. The EDP scheme is an extension of the RDP 

code, and requires only n-1 iterative recovery steps in its 

decoding operations. In comparison with RDP code, the 

EDP scheme can significantly reduce the data recovery 
time due to the two optimal parallel iterative chains. 

Detailed simulations and experiments show that the EDP 

scheme has the faster decoding process between the 

existing two iterative recovery chain codes. 

EDP algorithm is more suitable for parallel 

implementation because each thread covers exactly the 
same amount of failed nodes with the same speed. Along 

with simplicity and flexibility, this property makes the 

EDP scheme an ideal candidate for parallel 

implementation.  

Another advantage of the EDP scheme is that it can be 

used in the current RDP based systems smoothly without 
any configuration change. Hence, the EDP scheme is very 

suitable for achieving high availability in practical data 

storage systems. 
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