

A Fair Multi-Party Non-Repudiation Scheme for Storage Clouds

Jun Feng, Yu Chen, Douglas H. Summerville
Dept. of Electrical & Computer Engineering, Binghamton University (SUNY), Binghamton, NY 13902

{jfeng3, ychen, dsummer}@binghamton.edu

ABSTRACT

Data storage is one of the most profitable applications in
Clouds. Although a transparent service model is
convenient, it may be subject to the loss of data integrity.
Our study revealed vulnerabilities in some commercial
Cloud storage services. We analyzed the repudiation
problem in a Cloud environment. In this paper, we
propose a new multi-party non-repudiation (MPNR)
scheme to fix the issue. Rationale behind the new scheme
and a description of its operation are provided. We also
discussed its robustness against typical network attacks.

KEYWORDS: Non-repudiation, Cloud Storage.

1. INTRODUCTION

Storage of data is potentially the most profitable
application in the Cloud. Given this large potential profit
for such services, cloud storage service providers attempt
to persuade their users to store important and sensitive
data to Cloud. They often advertise the convenience that
this new business model offers to users.

A number of consultants and security agencies, however,
have issued warnings concerning security threats in Cloud
models [12] Potential users are left to wonder whether the
confidentiality, integrity, and the availability of their data
are guaranteed in Cloud Storage. Just as no one would
want to put his valued possessions in a house without a
secure lock, users are reluctant to move important and
sensitive data to Cloud until these challenges have been
well addressed. Therefore, to date this potentially valuable
service model is still not widely accepted.

In addition, some user concerns cannot be alleviated by
simply developing new technologies. There is naturally
some psychological anxiety when a user is faced with the
decision to store sensitive data in a location that is out of
his control. In fact, some problems require more than
conventional cyber security mechanisms and introduce
new security challenges. Research in Cloud storage
security is far from mature, and traditional cyber security

solutions cannot provide enough protection in the Cloud
for other reasons [25] .

Meanwhile, the uniqueness of secure Cloud storage still
has not been fully understood. For example, one
characteristic of Cloud Storage is mass storage in which
data is communicated not only through the Internet, but
also can be shipped by couriers or by other means if the
size of data is huge, e.g. 1TB. Time is not a deterministic
factor.

In this paper, we investigate current commercial Cloud
storage platforms [29] [30] and some proposed
architectures and approaches for secure Cloud storage. As
discussed in detail in Section 2, there still exist
vulnerabilities that can potentially lead to disputation. To
correct such weakness, we propose a new fair multi-party
non-repudiation (MPNR) scheme for secure Cloud storage
systems. We focus on how to ensure integrity with fair
non-repudiation, not just how to maintain integrity itself
since current integrity algorithms are sufficient. The idea
of integrity checks and non-repudiation is not new. Using
traditional non-repudiation protocols, the receivers can
decrypt the received data. This is not preferable for cloud
storage. In cloud storage, the cloud provider is a hollow
man-in-the-middle, it cannot access the content of data.
Another issue is privacy, which is beyond the scope of this
paper and interested readers are referred to reference [33].

The rest of this paper is structured as follows: Section 2 is
related work. Section 3 presents the design of a new
MPNR framework. Section 4 discusses the robustness of
our scheme against typical malicious attacks. Finally,
Section 5 summaries this paper.

2. RELATED WORK
We analyze vulnerabilities in today’s commercial Cloud
storage systems first, which open the door for potential
data integrity tampering and disputation problems. Then,
an introduction to several secure architectures for Cloud
storage platforms and security approaches adopted in these
architectures are described. Finally we explain why a fair
MPNR is needed in this context.

Suppose there are three entities involved in Cloud storage,
namely the data owner, the service provider and the users.
The owner stores important or sensitive data to the Cloud
and pays for this service. The service provider provides
secure storage services and obtains profit. The users fetch
data from Cloud storage and also pay for the service. Only
the owner can decide and change the access control
polices for his data. We also suppose that no party is
trustworthy in the Cloud environment. That is, the owner,
provider or users may deny their actions if doing so would
compromise their interests, or they are willing to attack
others if such behavior is beneficial to them. To date, no
research has been done on fair non-repudiation for Cloud
storage. Related work can be divided into three parts.

Cloud storage is an application that covers a number of
services (SaaS, PaaS, IaaS, etc) [22]. The lifecycle of data
in Cloud storage can be divided into three phases:
Uploading, Maintenance, and Downloading. While data
integrity in the uploading and downloading phases is
achieved by cryptographic protocols such as SSL (Secure
Sockets Layer) or TLS (Transport Layer Security), it is
more complicated for users to monitor integrity and
availability of remotely.

2.1 Existing Platforms for Cloud Storage

There currently exist some Cloud storage platforms
(Amazon S3, Microsoft Azure, etc.). For large blocks of
data (> 1TB), service providers such as Amazon AWS [29]
require data to be shipped on a storage medium (e.g. a
hard drive) while some extra authentication/authorization
information is delivered through email. For smaller blocks
of data (≤ 50 GB), upload or download via the Internet is
used, just as Microsoft Azure [29] does.

Although the software may be different, a similar strategy
has been used to provide data integrity (e.g. MD5 digest).
As shown in Figure 1, when the owner uploads data into
Cloud storage space, it can ship or send data to service
providers with a digital digest, MD5_1. If the data is
transferred through the Internet, a signed non-repudiation
request could be used to ensure that data has not been
tampered.

When the service provider receives the data with a signed

MD5, it stores data with the corresponding MD5_1. When
the service provider gets a verified request to retrieve data
from the users, it will send/ship the data with an MD5 to
the user. On Amazon’s AWS platform, the original
MD5_1 will be sent by the owner when uploading, and a
re-computed MD5_2 is sent by AWS when downloading.
In contrast, to provide data integrity, Microsoft’s Azure
Storage Service stores uploaded data MD5_1 in database
and returns it to the user when it wants to retrieve data [30]

This procedure is secure in each individual session.
Integrity and confidentiality of data during transmission
are guaranteed by SSL protocol. However, from the
perspective of Cloud storage, data security depends not
only on uploading and downloading phases, but also on
the maintenance phase. The Uploading phase ensures that
data received by Cloud providers is the same as the owner
uploads. The downloading phase guarantees that what the
user retrieves is the same data the Cloud provider sends.
Unfortunately, there is one critical link missing that is
required to protect or track data stored in Cloud storage.

2.2 Secure Cloud Storage Architectures

Since Cloud storage is a service delivered over the Internet
and hardware and system software provide the service,
traditional distributed storage can be looked at as a
specific case of Cloud storage. Security problems in
distributed storage systems, such as authentication,
authorization, availability, confidentiality, integrity, key
sharing and management, auditing and intrusion detection,
usability and performance, should also be considered in
Cloud storage.

Kher and Kim [17] presented a survey of existing secure
storage systems and listed some solutions. However,
Cloud storage systems have their own features. The Cloud
Security Alliance’s report [31] lists 15 different issues and
Chow et al [7] group them into three categories:
traditional, availability and third-party control. Cachin et
al [4] presented a brief survey of solutions to secure Cloud
storage. They use a “provable data possession” (PDP) [1]
model or a “proof of retrievability” (POR) [13] model for
ensuring possession of a file during a maintenance phase.
Such models and their derivatives can efficiently and
sufficiently find gross omissions such as 1% data loss and
are effective. They also use some protocols, such as
SUNDR [18] to realize fork-consistent storage.

Based on recent proposed non-standard approaches,
Kamara and Lauter [15] described a secure Cloud storage
architecture. They believe “confidentiality, integrity,
availability, reliability, efficient retrieval, data sharing”
services should be provided. In their architecture, there are
four components: a token generator (TG) to generate
indices that enable the provider to search data, a data
processor (DP) to encrypt the data by some methods, such

Figure 1. Illustration of potential integrity

problem.

as AES, searchable encryption, a data credential generator
(CG) for an access control policy, and a data verifier (DV)
to check integrity. In their architecture, Cloud storage
providers are responsible for availability and reliability.
DP is responsible for confidentiality. DV is responsible for
integrity. CG is responsible for data sharing. TG is
responsible for data retrieval. POR/PDP is responsible for
proof of storage.

Kamara’s work is useful for proving the integrity of data,
but it is not perfect for a holistic Cloud solution. Raluca
Ada Popa et al [25] presented architecture for secure
Cloud storage. They divided the security properties of
Cloud storage in four categories: confidentiality, integrity,
write-serializability and read freshness. With signed
messages and chain hash, the architecture can provide
non-reputable and write-serializability property. Freshness
is guaranteed by periodically auditing data.

2.3 Security Issues for Cloud Storage

Obviously current Cloud storage platforms can meet basic
requirements of mass storage at a low cost. We can also
enhance the security of Cloud storage using some of the
methods mentioned above. Confidentiality and Integrity
are achieved through robust encryption and Message-
Digest respectively. Non-repudiation is provided by the
exchange of signed message-digests [8] Freshness is
guaranteed by periodic audit. Write-serializability is
supported by chain hash or persistent authenticated
dictionary (PAD) [10] . SUNDR can be used to defend
“fork consistency attack”. Broadcast encryption [3] and
Key rotation [14] are used to improve scalability.

It seems that security problems in Cloud storage systems
are covered. Nevertheless, one of the crucial aspects of
Cloud storage is that none of the three entities should
always be trusted. Any one of them could be malicious.
That is why non-repudiation is a key mechanism [25] in
secure Cloud storages.

However, although signed digests are used for non-
repudiation in Cloud storage [8] [25] , they did not
consider “Fairness” too much. Fairness means that

“no party gains an advantage over another at any moment
during the running of the protocol. The protocol would not
be fair, for example, if one of the parties obtained the
signed contract without the other being able to do
likewise” [21] .

It is obvious that “Non-repudiation” in references [8] and
[25] is not “fair” since any party can refuse to send his
own certification after it receives the sender’s certification.
Then non-repudiation method in references [8] and [25] is
just the case 1 in [28] . This will lead to two problems:

1. Space Consistency: How can a user ensure that the
received data are the same as that the owner has
uploaded earlier? Has it been tampered when stored in
the cloud?

2. Fairness: If a sender does not get any response from its

peers, what can it do once disputation happens?

Although PAD can be used to solve the consistency
problem, it has an assumption that the users need to know
the element in Cloud. SUNDR can also be used in the
consistency problem. However, it still has two
assumptions. At least one user has the correct updated data,
and other users can communicate with the user and the
user should be trusted.

References [8] [9] [25] proposed a prototype. However,
more details should be considered. Otherwise, such non-
repudiation protocol could be easily attacked [19] . Thus
we propose a novel fair multi-party non-repudiation
(MPNR) protocol for Cloud storage.

3. A NEW MPNR PROTOCOL
3.1 Notation and Definitions

For a description of our fair non-repudiation protocol,
some notation and definitions are used as follows:

NRO: Non-Repudiation of Origin, which is held by the

recipient and is intended to protect against the
sender’s false denial of having originated the message
by being presented to an arbitrator [27] who can
unambiguously decide whether the sender is the
author of a given message or not.

NRR: Non-Repudiation of Receipt, which is held by

sender and intended to protect against the recipient’s
false denial of having received message by being
presented to an arbitrator [28], who can
unambiguously decide whether the recipient received
a given message or not.

Timeliness: This is achieved if and only if all honest

parties always have the ability to reach, in a finite
amount of time, a point in the protocol where they can
stop the protocol while preserving fairness.
Timeliness avoids situations where a party does not
know whether it can stop the protocol without loosing
fairness or not. A multi-party protocol is said to
respect timeliness if all honest entities are able to
terminate the protocol in a finite amount of time
without losing fairness.

L: Unique Label throughout the session. Here we suppose

L is the hash of the data and the entities.

Flag: Indicate the purpose of the step.

EGB{}: any group encryption scheme that only recipients

Bi∈B can decrypt it. NROOU is encrypted with group
encryption scheme. We do not imply that is the only
option. Different schemes can be used under different
scenarios. For example, if there are fewer recipients,
we can encrypt the NROOU with each recipient’s
public key, add a label for location and concatenate
them together. If there are many recipients, we can
use other group encryption methods [6] . When user
Bi downloads the data from the Cloud, it will decipher
it using K, where K is the key for B to decipher the
data.

EX(M): asymmetric encryption of message M with party

X’s public key.

SX(M): signature of the message by party X, normally

with X private Key.

H(M): one-way hash function over the message M.

X→Y: party X sends a message M to party Y.

X↔Y: party X fetches a message M from party Y.

3.2 The Fair MPNR Protocol

This section presents a new MPNR protocol. To date,
there are only two approaches for fair non-repudiation
[14], [16], [20], [26]. One is gradual exchange, which is
not practical. Another is Trusted Third Party (TTP), which
is used in nearly all non-repudiation protocols. In
traditional non-repudiation applications, four steps are
required to finish the fair non-repudiation protocol.

#1. A sender sends an encrypted message EK(M) to a

recipient with an NRO.
#2. The recipient responds with an NRR.
#3. After the sender gets an NRR, it will send the key to

the recipient with an NRO.
#4. The recipient responds with an NRR.
#5. An entity can initiate Resolve mode if it is needed.

In this paper, owner and users are senders and we denote
them “A” and “B”, respectively, and Cloud provider as
recipient is denoted “C” The architecture is illustrated in
Figure 3. In the new MPNR protocol, we still use a TTP to
guarantee “Fairness” as illustrated in Figure 2(a). In
addition to normal upload/download processes, Resolve
mode guarantees that every party is able to complete or
abort the execution of protocol, without being forced to
wait for responses from other parties, who are potentially
malicious or irresponsible.

We assume communication channels between the peers
and TTP are resilient and reliable. “Resilient” means
messages will be eventually received. We also assume that
generally all parties are willing to complete the
transactions by themselves and the TTP is only required as
a last resort. None of the parties acts against its own
interests. For “Consistency”, the key idea is that in our
MPNR protocol the provider is just like a hollow man-in-
the-middle. The rationale is to bridge the uploading and
downloading data with a fair non-repudiation receipt
through group encryption. Data from the owner to users is
packed and encrypted. The provider can only check the
integrity of packed data and decide whether users can
access data according to an access list managed by the
owner. The provider cannot know the content of data and
cannot tamper data, as in Figure 2(b).

R
es

ol
ve

(a). Fairness.

(b). Consistency.

Figure 2. MPNR for Cloud Storage.

The MPNR has two modes: Normal mode and Resolve
mode. Normal mode needs two rounds: Uploading session
between Owner and Provider and Downloading session
between Users and Provider. Normal mode is similar to
that in references [8] [25] It supposes the two peers are
willing to exchange messages and non-repudiation
evidence, and messages cannot be lost during transmission.
If the sender failed to obtain non-repudiation evidence, it
can invoke a Resolve mode through the TTP.

3.2.1 Normal Mode
A. Uploading Session: Owner <=> Provider

A sender uploads data to Cloud and updates it later.

In this step, Owner encrypts data with key K, generates
two proofs of non-repudiation: NROOU and NROOC for the
users and the Cloud provider respectively, where “OU”
means the evidence is produced by the owner and will be
stored by the user. “OC” has the similar meaning. NROOU
is critical for multi-party communication. K is the key
used to decipher the data. Users will verify the data
integrity SA(H(DataToBeStored)) after they download
data. The sender uses the group encryption scheme to
guarantee that only the recipients in the B_list can

decipher the NROOU. This signed hash is very critical
since it makes up the missing link between the uploading
and downloading sessions. Owner encrypts the NROOC
with the provider’s public key and delivers the NROOC to
the Cloud as the non-repudiation evidence. When the
owner wants to update data or the user access list or abort,
it just needs to modify the content of Request. The step is
described as follows:

Step 1: A => C;
Request = {L, A, C, TTP, DataToBeStored, B_List,

H(DataToBeStored), H(B_List), Seq, flag, Tg,
T1, EGB{NROOU}, EC{ NROOC}}

Where:
NROOU := {K, L, SA(H(DataToBeStored))}, it is open to

recipients but it is not open to Cloud service
provider.

NROOC := {SA(H(DataToBeStored), H(B), EGB{NROOU},

H(L, Seq1, f1, Tg, T1)}. NROOC is the evidence of
non-repudiation.

Seq1: represents the unique sequence number in each

message. Each step must be unique throughout the
whole transaction in order to prevent reply attacks.

Tg: The time when the message is generated. It should be

authenticated since all other timestamps are generated
based on it.

T1: The time limit for sender to wait for the NRR from

recipient in Step 1.

B_List, H(B_List): the list of authenticated recipients who

can download and decrypt the data and its hash value.

Step 2: C => A:
Response = {L, A, C, TTP, H(DataReceived), H(B), Seq2,

flag, Tg, T2, Ts, EA{NRRCO}}.

Where:
NRR : = SC(H(DataReceived)), SC{H(L, Seq, flag, Tg, T2,

Ts, NROOC)}.

Ts: The time when data is stored, it provides sender the

evidence of data storage time.

Once the message is received from the owner in Step 1,
the Cloud storage service provider verifies the validity of
L with A, C, and TTP, H. If valid, the service provider
decrypts message with its private key and conducts further
verification of the integrity of parameters in the Request.
Then, the integrity of data will be checked. When all
procedures are completed without any anomalies detected,
the service provider sends NRR to sender before time is
up. Otherwise, the service provider will respond with an

ERROR message. On receiving the NRRCO, the owner
verifies whether the hash of data H(DataReceived) is the
same as what it has sent and validates the NRR. Then, the
owner stores NRR for future. Otherwise, it initiates
Resolve process.

After the provider sends an NRR to the owner, there are
two possibilities. One is that the message is lost and the
owner cannot get the NRRCO. In such case, provider will
get a request from TTP through Resolve mode. Otherwise,
it means that owner gets and agrees to NRRCO. The
uploading session ends. T2 should not be shorter than T1.

B. Downloading Session: Users <=> Provider
When any user wants to download data, it should send a
request with non-repudiation evidence NROUC to the
Cloud provider. The request includes the user’s identity.
The provider will validate the request and verify whether
the user is in the list of B that was previously sent by the
sender. If it is, the data along with EGB{NROOU} will be
sent to the user with provider’s non-repudiation evidence.

When the user gets data and EGB, it will obtain K and
H(Data) by decrypting EGB{NROOU} and check the
integrity. Meanwhile, the user will also check the validity
of the NRRCU. After the provider responds NRRUC to
users, there are two possibilities. One is that message is
lost and the owner cannot get NRRUC. In such case,
provider will get a request from TTP through Resolve
mode. Otherwise, it means that the owner gets and agrees
to the NRRCU. The downloading session ends. T4 should
not be shorter than T3.

Now, the hash value H(DataToBeStored) between the
owner and the users is exchanged through the Cloud
provider without requiring extra channels, and it is hidden
from Cloud provider. We use H(DataToBeStored) as the
integrity link to guarantee the “Consistency”.

Step 1: B => C;
Request = Li, A, C, Bi, TTP, Seq3, flag, Tg, T3,
EC{NROUC}.

Where
NROUC : = SBi{H(Li, A, C, TTP, Seq3, flag, Tg, T3)},

Li := H(A, C, Bi, TTP)

Step 2: C => Bi:
Response = {L, A, C, Bi, TTP, DataRetrieved,

H(DataRetrived), Seq4, flag, T4, EGB{NROOU},
EBi{NRRCU}}

Where
NRRCU := SC(H(DataRetrieved), SC{EGB(NROOU)},
SC{H(L, Seq4, flag, T4)}, and T4 is the time limit.

3.2.2 Resolve Mode

Anomalies do not necessarily lead to the termination of a
transaction. The owner or user needs fair non-repudiation
evidence. Thus, a process of error correction and/or
anomaly resolution is required in this protocol. The sender
sends the message identification and evidence to TTP to
start a recovery process. TTP will transfer the request to
the provider with a time limit. If the provider agrees to
continue the process, it will return a message to TTP with
NRR before time out. Provider also should restart the lost
step 2.

There are two possibilities for sender. One is that the
recipient still refuses to respond. In such case, after time is
out, TTP will generate evidence of NRR to sender. The
Resolve session is done. Since the channel in Resolve
mode is resilient and the TTP is trustable, the arbitrator
would look at the NRR as the evidence. Another case is
the recipient will respond the TTP and restart the step 2.
After the sender receives NRR from the recipient, it will
inform TTP and Resolve session is done. Figure 3 is the
flowchart.

3.2.3 Resolution of Disputation
Having studied the behaviors of each party in the MPNR
protocol, there are five typical possible disputations as
summarized as follows:

Case 1: Owner and users collude to blackmail the service

provider. The owner stores some data in the Cloud
first; then a user downloads the data. They claim
that the data has been tampered and ask the service
provider to pay the so-called loss. The service
provider can easily prove his innocence by
presenting the NROOC and NROUC.

Case 2: The service provider has received the NRO but

does not respond with a NRR in order to have
some advantage over the senders. The senders can
handle such type of activity by initiating a Resolve
mode through the TTP. The service provider
cannot get any advantage.

Case 3: Consider the scenario where the provider wants to

charge more service fees. When owner stores
500GB data, but provider claims that it stored 1TB.
The owner can verify the earlier transaction
through NRRCO, and NROOC would not support
the provider. Similarly, this evidence also helps
the provider when the users try to deny the service
fees.

Case 4: There is the possibility that disputations happen

between the owner and users. The owner can
claim that a user has received the data but the user
denies. The arbitrator can easily figure out the
truth by the NRO and NRR.

Case5: Our MPNR protocol is also helpful to deny access

to unauthorized users. For instance, a client Bob
claims that it has permission to access the data.
This can be easily verified by checking the list of
recipients with NROOC.

3.3 Performance Discussion

The proposed non-repudiation protocol is like the TCP/IP
three-phase handshaking protocol. It is designed to
exchange evidence in the data transaction, which removes
ambiguities that lead to repudiations or disputations
among users or between a user and service provider.
Actually, all of the papers about on-repudiation focus on
the protocol design, and there is no experiment for
performance reported [1] ,[5] ,[16] ,[21] , [24] ,[26] .

Moreover, Cloud storage is different from the traditional
distributed storage. In the traditional distributed storage
applications, data is normally exchanged through the
Internet. For the cloud storage, however, since the data is
often large in size, such as GB or TB volume, the
bottleneck definitely lies on the uploading and
downloading process.

Therefore, current cloud storage services, such as S3,
normally use the ship-method (e.g. FedEx) to solve the
problem. Considered as the overhead, the time required
for executing the protocol is very small compared to the
time consumed by data transfer. For example, the time to
compute the MD5 and SHA1 for 2GB is about 9s and 11s,
but if we upload and download 2GB by internet, it can
take up to half an hour or more.

If we consider small data such as 20MB, the overhead is
less than 512 Bytes, (< 128 bytes for MD5 or < 384 bytes

Figure 3. Flowchart of Resolve mode.

for SHA-512, occupy 1 sector for disk), the latency time
should less than 13ms (ST32000641AS hard disk, 2TB,
7200rpms, 64MB cache, seek time ~8.5ms, latency time ~
4.2ms).

On the same computing power (Intel E8400, 3G RAM),
considering the data transmission, the computational time
depends on the data size. MD5/SHA-512 needs ~9s/12s
for 2GB bytes because of different rounds (64/80 iterative
steps). AES encryption for 2GB needs approximately
180s. The signature generation time is about 100ms
(ECDSA, ARM7TDMI, 50MHz) [32] . The total (needs 3
DSA) is about 300ms.

Data transmission time, which normally takes days or
hours, is by far much longer than time required by other
operations. For example, consider a data set of 2GB, the
time for encryption is about 180s, time for Digital Digest
is merely 12s, time for signature generation is only about
300ms, and the latency time is about 13ms. Obviously,
days/hours >> 180s >> 12s >> 300ms >> 13ms.

Compared to shipping time, the protocol execution time is
relatively trivial. Additionally, there are various factors
that influence the performances including disk type,
system architecture, algorithm, etc. Thus, we leave the
experimental study of performance evaluation as our next
step work considering the complexity.

Additionally, the entities still need similar confidentiality
and integrity operations even without the MPNR. The
MPNR protocol adds a very small extra burden for each
entity.

4. SECURITY ANALYSIS
The goal of non-repudiation is to enhance the security of
Cloud storage and convince potential customers that the
service is secure. Therefore, it is highly desired that the
MPNR protocol is robust against various threats. In this
section, we analyze the robustness of MPNR protocol
under some general malicious attacks and some specific
attacks for non-repudiation protocols.

4.1 General Attacks

Man-in-the-middle attack
The Man-in-the-middle attack (MITM) [23] is a form of
active eavesdropping in which the attacker makes
independent connections with the victims and relays
messages between them. The attacker can intercept all
messages being exchanged between the two victims and
inject new ones. However, an MITM attack can succeed
only when the attacker can impersonate the end party. It
can be prevented by authentication. In our MPNR protocol,
authentication and digital signature are required for the
purpose of eliminating disputation. Automatically, when

the parties get the other’s public key, they should
authenticate the validity against the MITM.

Reflection Attacks
A reflection attack [23] is a method that attacks a
challenge-response authentication system that uses the
same protocol in both directions. The protocol proposed in
this paper is not a challenge-response authentication
system. Furthermore, each message contains a unique
identifier, and thus the reflection attack can be avoided.

Interleaving Attacks
The interleaving attack [23] is similar to the man-in-the-
middle attack, but it can attack the protocol in which all
parties have authentic copies of all others’ public keys.
Interleaving attack can possibly succeed when there are
several rounds to exchange key and the to-and-from
messages are symmetrical or the symmetric key
establishment is on the shared session key. In this protocol,
the message is not symmetrical and binding with a unique
sequence number, and each session is finished only in one
round. Therefore, the interleaving attack cannot threaten
the MPNR protocol.

Replay Attacks
Replay attack [23] is a network attack in which a valid
data transmission is maliciously or fraudulently repeated
or delayed. This is carried out either by the sender or by an
adversary who intercepts the data and retransmits it.

The replay attack can be defended by the use of challenge-
response techniques and by embedding the target ID party
in the response or the timestamp. In our protocol, we use
unique sequence number with the sender signature to
avoid the attack. For example, an adversary Eve has
intercepted the message and replayed it to TTP. Even
though it can modify the SeqN in the plain text; the hash
value that has been encrypted by the sender’s private key
cannot be tampered without being detected.

4.2 Specific Attack

Timeline attacks
Timeline attacks are typical in non-repudiation protocols.
In fairness, each party can stop the execution after a pre-
fixed time out. In this protocol, the Tx field is used in each
message to limit the reception time of a message. Thus,
when a party receives a message, it will check the validity
of the Tx with the actual time. If it is invalid, the party
discards the message and initiates the resolve mode.
However, simply grafting some note of expiry may also
cause trouble. Consider the following protocol [28] :

Step Acts Parameters
1 A=>B B,L,T,C,NRO
2 B=>A A,L,NRR

3 A=>TTP B,L,T,K,sub_K
4 A<=>TTP A,B,L,T0,K,con_K
5 B<=>TTP A,B,L,T0,K,con_K

Step 4 and step 5 can be conducted concurrently. Since T
is the time limit on the TTP's clock and T0 is the time that
the confirmed key has made available to the public, it
remains so until time T. However, party A can delay step
3 up to the last moment before T, so that it can perform
step 4 while standing a good chance that B might
subsequently miss step 5 [19] .

Another example is shown below by adding a time limit.
Where B adds a time limit T1 in step 2, T1 < T. B wants A
to perform step3 before T1 to avoid the problem above.
When there is repudiation, the adjudicator checks that T0<
T1< T. But, since TTP does not know T1, B can give time
limit T1 < T0. After B gets K and the decrypted message,
it claims that the protocol execution is invalid [16] .

Step Acts Parameters
1 A=>B B,L,T,C,NRO
2 B=>A A,L,T1, NRR
3 A=>TTP B,L,T,K,sub_K
4 A<=>TTP A,B,L,T0,K,con_K
5 B<=>TTP A,B,L,T0,K,con_K

In our MPNR protocol, this attack is not possible since
there is only one round in one session, and no one can get
an advantage over another. Additionally, in each step, the
party tracks the time limit clearly.

Reuse of ETTP(K)
In one non-repudiation protocol [20] , sub_K contains
only items sent as parts of the first message. In particular
it contains ETTP (K). Thus B can reuse ETTP (K) in a
different protocol run with B’ and produce a valid sub’_K
that consists of SB(fsub, B’ ,L’ ,ETTP(K)), where L’ is a new
random label.

By using this sub’_K together with appropriate EOO’_C
and EOR’_C values in the resolve sub-protocol, B gains K
and thus learns the message M. A cannot receive any
evidence of receipt for this message, as A has only enough
information to run the abort sub-protocol.

But as B executes the resolve sub-protocol under a
different label L’, the attack always succeeds. Thus, the
protocol is unfair for A (assuming that knowledge of M is
valuable information for B) [11] . This type of attack
would have no impact on our MPNR protocol since there
is no need to generate a valid sub_K.

Reuse of Labels and Keys

In some protocols, labels are equivalent to H(Data, K) and
are unique. However, B cannot know the Data until the
last step. This property implies that B can only check the
validity of L in the last step. Under certain situations, TTP
also cannot check the validity of L since TTP never gets
the message for confidence.

For example, A can initiate the protocol with data M’ but
using the wrong label L = H(M, K). B cannot verify its
validity until the last step. Therefore A can receive
evidence of receipt for K from B if B forgets to check the
label or from TTP since TTP cannot check the label at all.
When B detects the error and initiates the resolve process,
TTP may reject its request since A has aborted the
transaction already. Such an attack cannot threaten the
MPNR protocol since each party can check the validity of
the Label in every step. TTP can also check the validity of
the Label of each step.

Wrong sub_k Attacks
This attack is special to certain NR protocols. Let’s
consider the NR protocol proposed in. If A sends a wrong
ETTP(K), the resolve protocol has to stop with an error
when it is initiated by B. Then it prevents B from
terminating the transaction. However, A can construct a
resolve request with the correct encryption of the key and
then A can complete the protocol at any time.

In our MPNR protocol, the attack is not feasible since TTP
only checks the consistency in the resolve mode and it is
the responsibility of A and B to decide the result of the
resolve procedure. If the sender sends a wrong message,
the message cannot reach the other party and the sender
cannot take any advantage.

5. CONCLUSIONS
This paper reports our work on data security in Cloud
storage. We have revealed the existing vulnerability in
Cloud storage due to the missing connection between the
robust uploading and downloading phases. We proposed a
new MPNR protocol that is specifically designed for the
Cloud storage environment. This protocol can enhance the
security of Cloud storage and make it more reliable for
potential consumers.

REFERENCES
[1] B. Agreiter, M. Hafner, and R. Breu, “A Fair Non-

repudiation Service in a Web Service Peer-to-Peer
Environment,” Computer Standards & Interfaces, vol 30,
no 6, pp372--378, August 2008.

[2] Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song. “Provable data possession at
untrusted stores”. In Proc. ACM CCS 2007, 2007.

[3] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant

Broadcast Encryption with Short Ciphertexts and Private
Keys,” Lecture Notes in Computer Science, 2005.

[4] C.Cachin, I.Keidar, and A. Shraer, “Trusting the Cloud”,

ACM SIGACT News, 20:4 (2009), pp. 81-86.

[5] M. Carbonell, J. M. Sierra, and J. Lopez, “Secure Multi-

Party Payment with an Intermediary Entity,” Computers &
Security, vol 28, no 5, pp289--300, July 2009.

[6] G. Chiou and W. Chen, “Secure broadcasting using the

secure lock,” IEEE Transactions on Software Engineering,
vol 15, no 8, pp929-934, Aug. 1989.

[7] R.Chow, P.Golle, M.Jakobsson, E.Shi, J.Staddon,

R.Masuoka, and J.Molina, “Controlling data in the Cloud:
outsourcing computation without outsourcing control”,
Proceedings of CCSW 2009, November 13; Chicago, IL.
NY: ACM; 2009; 85-90.

[8] J. Feng, Y. Chen, and P. Liu, “Bridging the Missing Link

of Cloud Data Storage Security in AWS”, the 2010 IEEE
CCNC’10, Las Vegas, Nevada, USA, January 9 - 12, 2010.

[9] J. Feng, Y. Chen, W.-S. Ku, and P. Liu, "Analysis of

Integrity Vulnerabilities and a Non-repudiation Protocol
for Cloud Data Storage Platforms," the 2nd International
Workshop on Security in Cloud Computing, in conjunction
with ICPP 2010, San Diego, CA, USA, Sept. 14, 2010.

[10] A. Anagnostopoulos, M.T. Goodrich, and R. Tamassia, “

Persistent authenticated dictionaries and their
applications”, In International Conference on Information
Security (ISC), Seoul, Korea, Dec. 2001.

[11] S. Gurgens, C. Rudolph, and H. Vogt, “On the Security of

Fair Non-repudiation Protocols,” Proceedings of 2003
Information Security Conference, Bristol, UK, October
2003.

[12] J. Heiser and M. Nicolett, “Assessing the Security Risks of

Cloud Computing,” Gartner Inc., June 2, 2008.

[13] A. Juels and B. S. K. Jr. Pors: “Proofs of retrievability for

large files”. In Proc. ACM CCS, pages 584–597, 2007

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and

K. Fu, “Plutus: Scalable Secure File Sharing on Untrusted
Storage,” In USENIX FAST, pages 29 ~ 42, 2003.

[15] S. Kamara and K. Lauter. “Cryptographic Cloud storage”,

In ACM Workshop on Cloud Security, 2009

[16] K. Kim, S. Park, and J. Baek, “Improving Fairness and

Privacy of Zhou-Gollmann's Fair Non-repudiation
Protocol,” Proceedings of 1999 ICPP Workshop on
Security, pp 140-145, Aizu, Japan, September 1999.

[17] V. Kher and Y. Kim, “Securing distributed storage:
challenges, techniques, and systems”, Proceedings of the
2005 ACM workshop on Storage (StorageSS'05), pp9-25,
Fairfax, Virginia, USA, 2005.

[18] J. Li, M. Krohn, D. Mazieres, and D. Shasha. “SUNDR:

Secure untrusted data repository”, In OSDI, 2004.

[19] P. Louridas, “Some Guidelines for Non-repudiation
Protocols,” Computer Communication Review, vol 30, no
5, October 2000.

[20] O. Markowitch and S. Kremer, “A Multi-Party Optimistic

Non-repudiation Protocol,” Proceedings of 2000
International Conference on Information Security and
Cryptology, pp 109--122, Seoul, Korea, December 2000.

[21] A. Ruiz-Martínez, C.I. Marín-López, L. Baño-López and

A. F. Gómez-Skarmeta, “A New Fair Non-repudiation
Protocol for Secure Negotiation and Contract Signing”,
Journal of Universal Computer Science, Vol.15, No.3,
February , pp 555-584, 2009

[22] T. Mather, S. Kumaraswamy, and S. LatifCloud, “Security

& Privacy”, O’Reilly, 2009,

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,

“Handbook of Applied Cryptography,” 1996, CRC Press

[24] J. Onieva, J. Lopez, and J. Zhou, “Secure Multi-Party Non-

repudiation Protocols and Applications,” ISBN 978-0-387-
75629-5, Advances in Info. Security Series, Springer, 2009.

[25] R. Popa, J. Lorch, D. Molnar, H.Wang, and L. Zhuang,

“Enabling Security in Cloud Storage SLAs with
CloudProof”, Microsoft TechReport MSR-TR-2010-46,
May, 2010.

[26] A. Ruiz-Martinez, I. Marin-Lopez, L. Bano-Lopez, and A.

F. Gomez-Skarmeta, “A New Fair Non-repudiation
Protocol for Secure Negotiation and Contract Signing,”
Journal of Universal Computer Science, vol 15, no 3,
February 2009.

[27] J. Zhou and D. Gollmann, “A Fair Non-repudiation

Protocol,” Proceedings of 1996 IEEE Symposium on
Security and Privacy, pp 55--61, Oakland, USA, May
1996.

[28] J. Zhou and D. Gollmann, “An Efficient Non-repudiation

Protocol,” Proceedings of The 10th Computer Security
Foundations Workshop. IEEE Computer, pp 126-132,
Oakland, USA, May 1996.

[29] “Amazon Import/Export Developer Guide Version 1.2,”

http://aws.amazon.com/documentation/, August 2009.

[30] Microsoft Azure Services Platform, http://www.microsoft.

com /azure/default.mspx, 2009.

[31] Security Guidance for Critical Areas of Focus in Cloud

Computing, http://www.cloudsecurityalliance.org
/guidance /csaguide.pdf.

[32] http://www.certicom.com/index.php/software-security-

solutions

[33] Privacy in the Cloud Computing Era, http://download.

microsoft.com/download/3/9/1/3912E37E-5D7A-4775-
B677-B7C2BAF10807/cloud_privacy_wp_102809.pdf,
Nov, 2010.

