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Abstract. High availability in network services is crucial for effective large-
scale distributed computing. While distributed denial-of-service (DDoS) attacks 
through massive packet flooding have baffled researchers for years, a new type 
of even more detrimental attack—shrew attacks (periodic intensive packet 
bursts with low average rate)—has recently been identified. Shrew attacks can 
significantly degrade well-behaved TCP sessions, repel potential new 
connections, and are very difficult to detect, not to mention defend against, due 
to its low average rate. 
   We propose a new stateful adaptive queue management technique called 
HAWK (Halting Anomaly with Weighted choKing) which works by 
judiciously identifying malicious shrew packet flows using a small flow table 
and dropping such packets decisively to halt the attack such that well-behaved 
TCP sessions can re-gain their bandwidth shares. Our NS-2 based extensive 
performance results indicate that HAWK is highly agile. 

1   Introduction 

Various kinds of malicious attacks have hindered the development of effective wide-
area distributed computing. The most notable type of attack is the so-called 
Distributed Denial-of-Service (DDoS) attack [7], which works by overwhelming the 
systems with bogus or defective traffic that undermines the systems’ ability to 
function normally. DDoS attacks aims at consuming resources (CPU cycles, system 
memory or network bandwidth) by flooding bogus traffic at sites so as to deny 
services to the actual user and prevent legitimate transactions from completing [1]. 
The TCP, UDP, and ICMP flooding attacks fall in this category. 

Unfortunately, while finding effective solutions to combat DDoS attacks has 
baffled researchers for years, an even more detrimental type of network-based attack 
has recently been identified [2]. This special class of attack is referred to as low-rate 
TCP-targeted DDoS attack or shrew attack [2] that denies bandwidth resources to 
legitimate TCP flows in a stealthy manner. Indeed, unlike traditional DDoS attacks, 
which are easy to detect by observing that the victim site is totally unable to respond, 
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a shrew attack is very difficult to detect [2] because the adverse effects on well-
behaved network connections are not easily observable. Commercial Web sites would 
then suffer from stealthy losses of potential new connections (hence, new 
transactions). 

The key idea behind a shrew attack is to exploit TCP’s Retransmission Time-Out 
(RTO) mechanism to synchronize intelligent (i.e., carefully articulated) low average 
rate bursts. Thus, a shrew attack can also be referred to as degradation-of-service or 
pulsing attack, as opposed to the well-known denial-of-service attack. Unlike a 
regular zombie that paralyzes a system by flooding it with a steady stream of attack 
traffic, the pulsing zombie attacks its target with irregular small bursts of attack traffic 
from multiple sources over an extended period of time (see Figure 1). As such, 
pulsing zombie attacks are more difficult for routers or counter-DDoS mechanisms to 
detect and trace. The reason is that unlike flooding DDoS attacks, they are slow and 
gradual, and thus they do not immediately appear as malicious. 

 
Fig. 1. An illustration of the shrew attack stream with a square waveform. 

 
As indicated by Kuzmanovic and Knightly [2], it is very difficult to detect such a 

shrew attack. The main challenge lies in separating a bogus traffic flow from a “flash 
crowd” [5] without maintaining complicated and expensive per flow state information 
at the routers. In this paper, we meet this challenge by proposing a novel effective 
detection technique, called HAWK2 (Halting Anomaly with Weighted choKing), 
which is an active queue management method based on only partial state. 
Specifically, HAWK works by judiciously monitoring the packet flows with the help 
of a small flow table. Traffic statistics are accumulated in the flow table using a 
technique similar to the CHOKe algorithm [3].  

A packet flow will be marked as malicious if its traffic statistics in the flow table 
indicate that the flow is far too bursty over an extended period of time (e.g., 5 secs) 
with very high rate bursts appearing in short time-spans (e.g., 100 msecs). Once a 
flow is identified to be malicious, HAWK will drop its packets decisively in order to 
help the well-behaved sessions to re-gain their entitled bandwidth shares. 
Furthermore, the HAWK algorithm is able to defend the targeted victim against both 
single source and distributed shrew attacks while maintaining low overhead in terms 
of processing and memory resources. Our NS-2 based simulation results indicate that 
the HAWK algorithm is highly effective.  

The rest of the paper is organized as follows. In the next section, we first describe 
the key characteristics of service-degrading network attacks, and then we introduce 
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Period of attack T (e.g., 1 sec) 

Peak rate R (e.g., 2Mbps) 

Length of the peak l (e.g., 150 msecs) 
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our HAWK algorithm for traffic burst characterization and corresponding flow 
classification. Simulation setting and experimental environment details are given in 
Section 3. In the same section, we present the NS-2 experimental results and provide 
our interpretations. Finally, we give some concluding remarks in Section 4. 

2   The Proposed HAWK Algorithm 

We propose to use our HAWK algorithm at the bottleneck link router for 
characterizing bursts of the attack stream and classifying them into legitimate or 
illegitimate sources. HAWK maintains a very small state information data structure—
the flow table—in order to track down the shrew flows. The flow table only keeps the 
traffic statistics of potentially malicious flows and confirmed malicious flows, and 
thus, normally, occupies very little storage space. The maintenance of the flow table 
is further elaborated below and the storage space requirements are discussed in detail 
in Section 3. 

The router maintains a single queue for all the incoming flows and the average 
queue size computation is done using exponential moving average as in RED [6] and 
CHOKe [3]. But unlike from these previous approaches, our decision-making 
algorithm involves flow table comparisons and statistical computations that are used 
to characterize and classify flows into different threat level categories. Whenever a 
new packet arrives at the queue, if the average queue size is less than the minimum 
threshold of the buffer (MinTh) the packet is admitted into the queue.  

Furthermore, HAWK checks each incoming packet against the existing entries in 
the flow table, and if there is a match the corresponding flow table statistics are 
updated. In the “random matching” process, the following checking actions are 
carried out. If the average queue size is greater than the maximum threshold (MaxTh) 
the incoming packet is dropped after checking and updating the flow table statistics. 
For the intermediate case when the average queue size value is between the minimum 
(MinTh) and maximum (MaxTh) thresholds, we use a mechanism similar to CHOKe 
[3] by admitting the packet with a probability p which depends on the average queue 
size. For instance, if the queue size is over the maximum threshold (MaxTh), the 
packet is dropped with a probability 1. Similarly, if the queue size is below the 
minimum threshold (MinTh), the packet is dropped with a probability 0. In the 
intermediate case, additional checking of the flow table and statistics computations 
are performed for flow classifications. 

In their modeling and simulations, Kuzmanovic et al. show the relationship 
between the throughput of a TCP flow and the denial-of-service inter-burst period. 
Our NS-2 simulations modeled single flow TCP and single flow DDoS stream 
interaction and the modeled flow [2]. The inter-burst periods of one second and lower 
are most fatal to the TCP throughput. The destructive impact reduces as the inter-
burst period is increased.  

Furthermore, it is found that for the most severe impact without being identified by 
existing routing architectures, these shrew bursts should occur in a small time window 
of 100-250 milliseconds. As such, if we take into account the periodicity of bursts 
with respect to two separate time windows, one having a smaller time scale of 100-
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250 milliseconds and the other having a larger time scale of 1-5 seconds, we can 
classify the attacks into different threat levels. 

On initially identifying a high burst rate flow over a short time scale, if it is found 
that the average queue size is larger than the MinTh, we perform the following 
checking. For each new incoming packet, we randomly pick a packet currently in the 
queue. If the two packets are found to be from the same flow, then we proceed to 
update the flow table statistics in order to see if the flow is to be considered as a 
malicious shrew flow. Otherwise, the packet is admitted without further action.  

Once the flow is identified as a high rate stream on a short time scale, we correlate 
these identified bursty flows over a longer time scale using our HAWK algorithm 
with the help of the small flow table. Thus, at most of the time, the resource 
requirement of the flow table is of the order of the number of potential attack sources. 
A cumulative burst value is maintained along with the packet entry times for each of 
the identified flows. The cumulative burst value and the associated time provide an 
insight into the burstiness of the flows. 

A large cumulative burst for an extended period of time indicates a potential 
malicious source. For shorter time scales we use a window size as 200 milliseconds. 
The rationale behind using this value is that for burst lengths longer than this, in order 
to maintain the same low average rate the DDoS stream would have to keep its peak 
rate low, thus decreasing the severity of the attack.  

Cumulative Burst gives an insight into the average bursts from a given flow over a 
series of larger time frames. Traffic Burst Rate above the threshold values over 
consecutive one second window is logged. If this trend is found to follow in more 
than or equal to three blocks within the last five seconds (Cthresh), the flow is 
confirmed as a malicious shrew flow and is blocked. We choose the value of three 
blocks in five seconds time scale to target the most severe effects of the DDoS 
streams. Also this provides some leniency to normally bursty flow which may send 
large but intermittent bursts. But since these natural bursts normally cannot extend 
symmetrically on a larger time scale of five seconds, we can be sure that our chosen 
time scale would be unbiased towards these naturally bursty flows. Finally, it should 
be noted that a time period of five seconds is the shortest time to confirm a successful 
detection. We call this five-second time window as HAWK Window Size. 

Furthermore, if some legitimate flow shows this behavior, it is good to block such 
a flow so as to provide fairness to other legitimate flows. Since the pre-filtering at the 
router input still maintains statistics for these flows, they can be removed from the 
flow table if they react to routers’ congestion indication and do not send large bursts 
for the next two time windows of one second each. This is again a configurable 
system parameter.  

Periods of more than two seconds are not very severe. Thus, we choose the value 
of two seconds to balance the tradeoff between an optimal flow table size in presence 
of normally bursty flows and detecting malicious bursts having higher periods. As 
such, our algorithm sets a flow as malicious if it detects three or more than three 
bursts over the threshold within a longer spanning window of five seconds. 

Traffic Burst Threshold value is chosen based on the link capacity of the routers’ 
output link. It was identified that any burst lower than one third of the link capacity is 
not severe enough to produce desired DDoS effect on the legitimate TCP flows. So, in 
performance study, we set the value of BFTH as one third of the bottleneck link 
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capacity. The attacker can gather information about the bottleneck link capacity using 
some of the probing schemes in existence [4].  

For distributed shrew attacks, instead of Source Address, we maintain Source 
Subnet that provides the cumulative traffic coming from the infected subnet to the 
destination victim. The calculation of packet dropping probability p when the average 
queue size exceeds the minimum threshold is done as in RED [6] and CHOKe [3], 
i.e., based on the exponential weighted moving averages of the average queue size. 
Typical values of suitable RED parameters for a gateway router with limited load 
would be: MinTh ranging between 30 to 100 packets, MaxTh set to 3MinTh and wq = 
0.002 [6]. 

The proposed HAWK algorithm can characterize the low-rate TCP-targeted attack 
using the flow table driven packet dropping technique, as formalized in the flowchart 
shown in Figure 2. Upon any packet dropped, the legitimate TCP flows will follow 
the standard protocol semantics and will cut down their rates in accordance with the 
end-system congestion avoidance mechanisms of TCP. Thus, the values of Cburst and 
BFrate will always remain much lower than the threshold values for these parameters.  

Whenever the average queue size is higher than the minimum threshold, a 
comparison of incoming packet with the already queued packets will result in a 
success with a high probability if the attack burst was sent during that time frame. The 
flow table statistics are incremented and the corresponding counter value and the 
burst parameters for that time frame would progress towards the threshold ultimately, 
resulting in confirmation of the flow as malicious. 

3   NS-2 Simulation Results 

In this section, we first describe the simulation set up for evaluating our algorithm in 
detecting and penalizing attacking hosts and providing fairness to the legitimate users. 
We use NS-2 to carry out our simulations and we compare the results of our proposed 
algorithm with those of two well-known active queue management (AQM) 
algorithms: Drop Tail and CHOKe [3]. As mentioned earlier, response time (i.e., the 
time duration from the attack launching instant to the attack detected instant) is a very 
important measure as it determines the duration of damage to a victim site. Thus, we 
would also examine the response time performance of our algorithm in identifying 
and blocking the malicious shrew hosts along with the false positives generated using 
our scheme. 

Our simulations consist of a variety of network configurations and traffic patterns 
simulating both single source as well as multi-source attacks coming from a single 
LAN and/or distributed LANs. For simulating attacks from different LANs, we use 
different delay values on the links. The collected statistics are used to plot normalized 
throughput against attack inter-burst period. The normalized throughput value 
provides the metric for evaluating the efficiency of our algorithm. 

The malicious hosts are modeled as UDP sources sending traffic flows in periodic 
intervals. The machine GR is the last hop gateway router interfacing to the victim 
machine connected to the outside network through an AS cloud. We perform statistics 
collection and computations on the last hop router GR. For a distributed attack 
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environment the only key parameter that we would like to focus on is the different 
delays that a flow gets in reaching the victim’s end. We achieve this by providing 
different link delays to each of the malicious hosts. 

 
Fig. 2. The proposed HAWK algorithm. 

 
We first use Normalized Throughput as the comparison metric, and it is defined as 

follows: 
Normalized Throughput =  
  Average throughput achieved by the TCP flow (or aggregate) with DDoS stream 
  / Throughput achieved without DDoS stream 
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The value of the normalized throughput gives us an indication of the severity of the 

damage done by the attack stream. The lower the normalized throughput is, the 
greater the damage. Unless otherwise specified we use the output link capacity of the 
last hop router as 2 Mbps, link delay as 120 milliseconds. The shrew attack stream is 
simulated to generate a square wave having a peak rate of 2 Mbps and a burst length 
of 150 milliseconds to target TCP flows with average RTT of 150 milliseconds and 
lower. 

Since all the TCP variants are equally vulnerable to the shrew DDoS stream of 50 
milliseconds or higher [2], for experimental purpose we use TCP-SACK. Our 
simulation uses a shorter time scale window of 200 milliseconds and a larger window 
of five seconds with internal one second blocks. Traffic Burst Threshold value is 
taken as one third of the bottleneck link capacity.  

We first consider the single source scenario. The simulation results of the 
throughput achieved, under different queuing schemes, by the legitimate TCP flows 
with different number of shrew DDoS streams are shown in Figure 3. The x-axis 
indicates the period of the burst and the y-axis indicates the normalized throughput 
where value of one indicates the theoretical throughput without the attack stream. It 
can be clearly seen that under Drop Tail the throughput of the legitimate flow almost 
reaches zero for period values of one second and lower.  

Further increase in the time period of the attack stream increases the throughput of 
the legitimate flow but it is still far below the actual attainable throughput of one. The 
results for the CHOKe queuing as shown in Figure 3 indicate a slight improvement in 
TCP performance but it is clear that CHOKe algorithm cannot achieve the desired 
goal of providing fair share of the link capacity to the legitimate TCP flows.  

 

 
 

(a) one shrew flow and one well-behaved TCP flow (b) one shrew flow and five well-behaved TCP flows 

Fig. 3. Performance comparison among Drop Tail, CHOKe, and HAWK in terms of normalized throughput. 

With our HAWK algorithm, we can see that the gain in the TCP throughput is 
significant throughout the two seconds attack period that we consider in this study. 
This is due to the fact that for identifying and correlating burst streams we have used 
three or more blocks of captured bursts within our larger time scale. 
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Next we consider the multiple-source scenario. The experiment is repeated with 
five legitimate flows and two DDoS streams so as to find out the impact of attack 
streams if the attacks are launched from multiple collaborating sites. This kind of 
scenario is one of the most common cases of distributed denial-of-service attack, 
where a malicious user compromises a large number of hosts called zombies to launch 
a coordinated attack with lower peak rate which means that for two DDoS shrews 
each source sends traffic at half the rate determined in the previous experiment. We 
would consider two different scenarios here. The link capacity and burst period are 
kept the same as above in both cases and the effect is seen on five TCP flows. 

Firstly, let us consider the case where these zombies are on the same subnet so that 
all have the same packet delay towards the victim. As shown in the Figure 4(a), the 
average throughput is almost similar to the previous experiment. Similar to the case of 
one legitimate flow, the trend shows that the DDoS attack stream has much worse 
impact for attack periods of one second and lower because of the minimum RTO 
value of one second for TCP and the best throughput is again given by HAWK. Here 
a modified adaptive filtering scheme is used where traffic coming from the same 
subnet is considered together to generate statistics. 

 
 

  

(a) attacks on the same subnet (b) attacks on multiple subnets 

Fig. 4. Effect of distributed shrew attacks from the same or different subnets (five well-behaved TCP flows). 

Secondly, let us consider the case when these zombies are on different subnets and 
trying to collaborate for launching a shrew attack on the victim. Being on different 
subnets, these zombies would have different packet delays towards the victim. This 
signifies a more realistic scenario if this kind of shrew attack is to be launched from 
distributed zombies across the globe. 

Four zombies are used, each sending at one fourth the peak rate. The link delays 
from the four zombies till the GR are chosen as 100, 120, 140, 160 milliseconds. As 
shown in Figure 4(b), the impact of the attack is reduced in this case. This is due to 
the fact that now the short attack stream from each malicious source reaches at the 
bottleneck router RV at different times and the router serves legitimate TCP flows 
more frequently. But the normalized throughput is still less than the ideal value of 
one.  
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The result suggests that the different queuing mechanisms CHOKe and HAWK are 
unable to produce any significant improvement over Drop Tail scheme. This indicates 
that for lower attack periods, the effect of shrew attack is more prominent. Though it 
can logically be assumed that with more number of zombies spread out and each 
sending at a very small fraction of the bottleneck bandwidth, the legitimate TCP flow 
aggregate would get fair share of the bandwidth. 

4   Conclusions and Future Work 

In this paper, we have proposed an adaptive packet-filtering scheme to address the 
open problem of TCP targeted shrew degradation-of-service attacks. Simulation 
results demonstrate that our algorithm, called HAWK, outperforms other router 
assisted queuing mechanisms for combating this special class of network based 
attacks. Our algorithm is easy to implement and requires a very small storage space 
that is most of the time only of the order of the number of potential malicious hosts. 

Our major on-going work is the implementation of our scheme on the DETER [8] 
testbed so that we can test the efficacy of the HAWK algorithm in a real environment. 
Another important research avenue is to extend our scheme to a distributed 
environment, where multiple routers can interact to identify these attacks even earlier 
and under wider range of traffic patterns and topologies.  
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