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Adaptive quantum design of atomic clusters
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Adaptive quantum design identifies the best broken-symmetry configurations of atoms and molecules that
enable a desired target function response. In this work, numerical optimization is used to design atomic clusters
with specified quasiparticle densities of states. The dominant self-assembled building blocks of these engi-
neered quantum systems are found to depend on the symmetry of the target function. For example, particle-
hole symmetric spectra can be constructed from a dilute configuration of atomic dimers, whereas more com-
plex structures such as trimers and quadrumers are required for asymmetric target functions. The convergence
of the optimization algorithms depends on the shape of the target function, the density of atoms, and constraints
due to substrates and boundary conditions. Hybrids of steepest-descent methods, simulated annealing, and
genetic algorithms are found to be most efficient.
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I. INTRODUCTION

In the near future, it will likely be possible to control th
precise spatial positions of atoms and molecules using
experimental techniques now being developed by na
science. To complement these emerging capabilities i
clear that a new set of theoretical tools has to be develope
assist in the exploration of a potentially vast number of at
configurations and a corresponding enormous range of ph
cal properties. In this paper, we outline an approach, wh
we call ‘‘adaptive quantum design,’’ that sets out to addr
this challenging task. In contrast to classical systems, ato
scale devices exhibit quantum fluctuations and collec
quantum phenomena caused by particle interactions. Bes
offering an excellent testing ground for models of correla
electrons, they also force us to reconsider conventional p
digms of condensed matter physics, such as crystal sym
tries that are imposed by nature. In some instances, s
symmetries need to be explicitly broken in order to enable
optimize a desired system response. Consider, for exam
the quasiparticle density of states in tight-binding syste
which is the subject of the present study. In translationa
invariant structures, i.e., crystals, it is well known that t
spectral response function exhibits Van Hove singularitie
positions of low dispersion, such as the band edges i
one-dimensional chain or the band center in a tw
dimensional square lattice. These enhancements of the
sity of states can be very useful in amplifying system
sponses such as optical conductivity at specific incid
energies. It is therefore important to be able to control
positions and shapes of such features by adaptive de
techniques applied to models which capture the essentia
grees of freedom of interacting atomic clusters.

Traditional ad hoc methods for the design of nanosca
devices will likely miss many possible configurations. At t
same time, it is unrealistic to expect individuals to manua
explore the vast phase space of possibilities for a partic
device function. The proposed solution to this difficult d
sign problem is to employ machine-based searches of
figuration space that enable user-defined target functi
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Adaptive quantum design solves the inverse problem by
merically identifying the best broken-symmetry spatial co
figuration of atoms and molecules that produce a des
target function response.

The two major ingredients of adaptive quantum design
the physical model, which in this work evaluates the ele
tronic density of states for a particular spatial arrangemen
the atoms, and the search algorithm that finds the glo
minimum in the parameter space of all possible configu
tions. This problem is typically highly underdetermined
the sense that there can be several atomic configurations
yield a system response very close to the desired target f
tion. Often, the associated landscape of solutions is sha
and has many nearly degenerate local minima.

Adaptive quantum design therefore relies heavily on e
cient algorithms that accurately model the interacting sys
and find its optimal configuration, i.e., the global minimu
in the available parameter space that yields the best matc
the desired target function. This target response may b
specific angular transmission of a photonic crystal, a fi
tuned Josephson current along a superconducting junc
array, or an energy-dependent density of states profile o
atomic cluster—the case on which we focus here. In t
work, various numerical search tools are applied, includ
guided random walk, simulated and triggered annealing,
genetic algorithms. In particular the last set of technique
most efficiently implemented on parallel computers. It is o
served that in practice hybrids of these methods yield
best results, i.e., fast convergence towards a global m
mum.

The particular example of a long-range tight-bindin
model is chosen for this study because it captures esse
features of correlated quantum mechanical systems, and
permits fast numerical diagonalization of relatively lar
clusters with broken translational symmetry. In a typical o
timization run, these ‘‘function calls’’ occur 100–10 00
times. This model is therefore suitable for developi
and testing adaptive design algorithms, and should be vie
as an initial step towards the design of atomic clusters. T
goal of this work is to test the applicability and limits o
©2004 The American Physical Society10-1
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adaptive design techniques on a simple but nontrivial qu
tum system.

II. LONG-RANGE TIGHT-BINDING MODEL

The tight-binding approach is an effective tool to descr
the band structure of electronic systems. It is commonly u
to model the relevant bands close to the Fermi level,
tained from complex density-functional theory calculation
Since in this work symmetry-breaking, nonperiodic config
rations are considered, a long-range variant of the tig
binding model with overlap integrals depending on the va
able interatomic distance has to be used. Its Hamiltonia
given by

H52(
i , j

t i , j~ci
†cj1cicj

†!, ~1!

whereci
† andci are creation and annihilation operators a

site rW i , and the sum over pairs of atoms is restricted to av
double counting. Here the spatial decay of the overlap in
gral t i , j is parametrized by a power law,

t i , j5
t

urW i2rW j ua
, ~2!

where the exponenta is taken to be 3.0 throughout the pap
unless mentioned otherwise.1 This parametrization reflects a
algebraic variation of the overlap integral with interatom
separation. The choice of sign in the Hamiltonian follows t
convention fors orbitals. However, this simple implementa
tion of the tight-binding model does not account for the
bital directionality of realistic Au, Ag, or Pd atomic wav
functions. More sophisticated and numerically expens
techniques, such as the local density approximation, wo
be needed to make quantitative predictions for these syst

The Hamiltonian matrix of the long-range tight-bindin
model in the basis of single-particle states is nonsparse,
only its diagonal matrix elements vanish. In order to obt
the spectrum, the matrix is diagonalized numerically for
nite clusters. In Fig. 1, the resulting densities of states
translationally invariant chains and square lattices are sh
for the nearest-neighbor tight-binding model witht i , j5td i , j
in Figs. 1~a! and 1~c!, and for the case of long-range overla
integrals in Figs. 1~b! and 1~d!. Characteristic Van Hove sin
gularities are observed, in one dimension at the band ed
and in two dimensions at the band center. For the long-ra
model, the particle-hole symmetry is broken because of fr
tration introduced by the competing overlaps, leading
asymmetries in the density of states. While the system s
in Fig. 1 are chosen to be rather large in order to ma
contact with the familiar thermodynamic limit, there are s
some visible finite-size remnants, i.e., a faint pole struct
due to the discreteness of the system. These features be
much more pronounced for the few atom clusters that
studied in the following sections of this paper.
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III. TARGET FUNCTIONS AND CONVERGENCE
CRITERION

While ‘‘nature’’ gives us densities of states that are co
strained by the dimensionality and symmetry of the unde
ing lattice, our objective is to engineer spectral respon
with specific shapes that are useful in designing nanos
devices. For example, we may wish to produce a quasi-t
dimensional spectrum in a one-dimensional system or
concentrate spectral weight in particular energy window
These goals are achieved by placing the atomic constitu
into optimized symmetry-breaking configurations which a
determined by numerical searches.

The specific target functions that are studied in this wo
are shown in Fig. 2. They are~a! a flat top-hat density of
states centered atE50,

N~E! target5u~E2Ec!u~E1Ec!, ~3!

whereu(x) is the Heaviside function, andEc is an energy
cut off, ~b! a symmetric two-peak function, centered atE
50,

N~E! target5u~E2Ec2!u~E1Ec1!1u~E2Ec1!u~E1Ec2!,
~4!

and~c! a particle-hole symmetry-breaking function with tw
unequal peaks, i.e., more spectral weight on the quasi
side (E,0) than on the quasielectron side (E.0) of the
spectrum,

N~E! target5u~E2Ec2!u~E1Ec1!1u~E2Ec4!u~E1Ec3!.
~5!

In systems with finite numbers of tight-binding atom
these continuous shapes are approximated by equally sp

FIG. 1. Density of states in spatially invariant tight-binding sy
tems with periodic boundary conditions.~a! Nearest-neighbor chain
~no long-range overlap integral! with 30 atoms.~b! Same as~a!, but
with long-range overlaps according to Eq.~2!. ~c! Nearest-neighbor
square lattice with 400 atoms.~d! Same as~c!, but with long-range
overlaps.
0-2
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poles within the energy windows whereN(E) target is a non-
vanishing constant. Here, thed functions are given a finite
width of 0.02t. As more atoms are added to the system, th
peaks merge together, approaching the bulk result. For o
nonflat target functions the quasiparticle peak spacing ca
varied, e.g., following a Gaussian or Lorentzian shape. Na
rally, not all targets can be achieved equally well. Fact
that influence the achievable match to a target include
number of available atoms and, as will be shown, a conti
ous or discrete number of accessible spatial positions.
dimensionality of the system poses additional constraints
particular, there are less available configurations in low
dimensions. This study focuses on three prototype spe
responses which are targeted by numerically optimizing c
figurations of clusters with up to 48 atoms in two spat
dimensions.

The optimization algorithms seek to minimize the dev
tion from a given target density of states, defined by the e
function

D5E
2`

`

dE@N~E!2N~E! target#
2, ~6!

FIG. 2. Target densities of states used in this work:~a! top-hat
function, centered atE50, ~b! particle-hole symmetric two-pea
function, and~c! asymmetric two-peak function. For systems wi
finite numbers of particles these shapes are approximated by q
particle peaks.
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which is the least-square difference between the system
sponse for a given configuration and the target respo
function. We have explored a number of numerical tec
niques, including the Newton-Raphson steepest des
method, simple downhill random walk, simulated and tr
gered annealing, and genetic algorithms. The advantages
disadvantages of these techniques are briefly discussed i
Appendix. In general, it is found that hybrids of these me
ods tend to work best. In the following section, we focus
adaptive design of atomic clusters in continuous configu
tion space without any restrictions to underlying discrete
tices. In this case, the search space is infinite which gene
allows better convergence to a given target response tha
finite configuration space. However, some experimental r
izations of such structures require deposition of atoms
substrates with discrete lattice structures.2–4 Therefore, this
case is addressed separately in the subsequent section.

IV. ATOMS UP DESIGN OF TIGHT-BINDING CLUSTERS
IN CONTINUOUS CONFIGURATION SPACE

The first target density of states we would like to study
detail is the particle-hole symmetric top-hat function, ce
tered at energyE50, shown in Fig. 2~a!. This function rep-
resents a constant density of states for a bulk solid betw
the energy cutoffs6Ec , giving a bandwidthW52Ec . Here,
we chooseEc53t. However, it should be noted that with th
adaptive quantum design approach we are not restricte
this choice, and target densities of states with quite differ
bandwidths can be matched, although often to a lesser de
of accuracy.

In Fig. 3, the solution for a system with 16 atoms confin
to a box with periodic boundary conditions is shown. T
guided random walk method is applied to optimize the co
figuration of atoms by iterative local updates of their po
tions in order to match the top-hat density of states. As
served in Figs. 3~a! and 3~c!, good convergence to the targ
function can be achieved for this case after less than 2
updates. A contour plot of the potential( i j 2t i j /urW i2rW j ua for
the resulting spatial configuration is shown in Fig. 3~b!. For
this target function one discovers the formation of dime
with a wide range of interdimer and intradimer spacing

si-
ensity of
alk

al
FIG. 3. Adaptive quantum design applied to 16 atoms in a two-dimensional box with periodic boundary conditions. The target d
states is a symmetric top-hat function with bandwidth 6t. The atomic configurations are optimized by applying a guided random w
algorithm to the long-range tight-binding model.~a! The best matching solution.~b! Contour plot of the potential of the resulting spati
configuration.~c! Convergence to the target function, log10(D), with the number of updates.
0-3
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FIG. 4. Same as Fig. 3, but for a symmetr
two-peak target function with peaks of bandwid
2t centered at23t and 3t.
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These self-assembled building blocks have variable di
tional orientation and are closely packed.

To explore the generic aspects of this result, let us n
turn to the two-peak target function shown in Fig. 2~b!. This
density of states has a gap in the center of the spectrum
may be desired for the construction of two-state syste
such asq bits. As shown in Figs. 4~a! and 4~c!, the conver-
gence to this target function is not quite as good as for
top-hat function, but saturation occurs already at half
number of iterations compared to the previous example.
terestingly, the optimized spatial configuration that is fou
in Fig. 4~b! also displays a preference for dimer formation

In the long-range interacting systems we are studying i
at least at first sight, not obvious why these target functi
prefer dimer building blocks. Let us address this question
examining the individual spectra of the molecular buildi
blocks shown in Fig. 5. Each dimer molecule contributes
the density of states a positive and negative pole with e
giesE56t12, wheret12 is the hopping integral between th
two participating atoms. The zero-energy quasiparticle pe
of two isolated atoms are split into bonding and antibond
combinations once they form dimer molecules. Therefo
isolated dimers are ideal building blocks for particle-ho
symmetric densities of states, such as the top-hat and
two-peak target function. The intradimer spacing determi
the positions of theE56t12 poles via Eq.~2!. With an ap-
propriate distribution of these distances the full-target sp
19541
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trum of the top-hat function can be covered. The poles cl
to the band center (E50) are provided by the less tightl
bound dimers. For the two-peak target function, the dim
building blocks required to realize the target spectrum
more tightly bound, and the intradimer spacings need to v
less to achieve this target.

The idea that dimers can be used as building blocks
the particle-hole symmetric target functions strictly appl
only to isolated dimers, i.e., the dilute limit, or when pote
tial gradients across dimers pairs from the presence of a
cent atoms do not break particle-hole symmetry. The abse
of such gradients, even for relatively high atom densities i
long-range interacting system, accounts for the succes
dimers in satisfying the target function.

Lower symmetry building blocks, such as trimers a
quadrumers shown in Fig. 5, can achieve more complex
get functions, in particular, those with broken particle-ho
symmetry. Due to frustration, trimer molecules intrinsica
have asymmetric densities of states with unequal spec
weights on the electron and the hole side of their spec
Quadrumers have a symmetric spectral response in the
sence of longer-range frustrating interactions. As an exam
of how these building blocks enable more complex tar
functions, let us consider the asymmetric two-peak densit
states given by Eq.~5! and shown in Fig. 2~c!, which has a
narrow upper peak and a wider lower peak, separated b
gap. In Fig. 6 it is observed that an approximate match
g

f
l

of
on
a

FIG. 5. Spectral response of tight-bindin
dimers, trimers, and quadrumers.~a! Potential
contour plot of dimer, trimer, and quadrumer o
size L0. ~b! In the dimer, the single-atom leve
~dashed line! is split symmetrically~solid line!.
Competing interactions~frustration! in the trimer
and quadrumer lead to asymmetric densities
states. The strength of the frustration depends
the separationL. ~c! Spectral peak positions as
function of normalized distanceL/L0 for dimer,
trimer, and quadrumer. The spectra forL/L051
are shown as solid lines andL/L053 as dashed
lines in ~b!.
0-4
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FIG. 6. Asymmetric two-peak quasiparticl
density of states. The solution contains dimer, t
mer, and quadrumer building blocks.
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be achieved by the adaptive method. As expected, the b
ing blocks for this particle-hole asymmetric target functi
are combinations of dimers, trimers, and quadrumers, wh
partially combine into larger clusters. Obviously, in order
achieve asymmetric target functions more complex build
blocks are required. Especially for systems which cont
only a small number of atoms it is important whether t
required building blocks are available, and whether there
nonparticipating unbound atoms that may deteriorate con
gence and match to the target function.

Let us finish this section by addressing the converge
properties of the three cases that were discussed. So far,
the simplest guided random walk optimization method w
considered in which every ‘‘downhill step’’ is accepte
These downhill steps are local updates of individual atom
position that lead to a better match of the spectrum to
target density of states. Especially for the most symme
target function, this algorithm converges efficiently, with
small remaining error. For the symmetric two-peak functio
convergence occurs even faster because the required d
building blocks are more uniform than for the first cas
However, the remaining error is slightly larger, indicatin
that this may be a metastable solution which could be
proved by global updates in which whole subclusters
simultaneously updated. Finally, the convergence plot for
asymmetric two-peak target function@Fig. 6~c!# shows sev-
eral plateaus, indicating metastable configurations that
hibit a high resistance against local updates. For this cas
much larger number of local updates is required to achi
an acceptable match. Hence, more complex target funct
clearly call for more sophisticated numerical search too
including annealing steps, parallelization, and global upd
ing schemes when available.

V. ADAPTIVE DESIGN IN DISCRETE CONFIGURATION
SPACE

In the preceding section local updates were conside
which allow atomic positions to change continuously with
a given radius. However, for the case of atoms deposited
a substrate with a given lattice structure, the set of availa
positions is usually discrete, although it may be very lar
This has significant consequences for the adaptive de
approach. The search space of solutions is finite in this c
which makes it feasible to study more atoms with simi
computational effort compared to the continuous case. At
same time, the discreteness of the lattice can prohibit fa
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able configurations that are available in the continuous c
thus deteriorating convergence properties of the optimiza
procedure. In practice, we find that the feasibility of comp
tations for larger numbers of atoms in the discrete case h
to achieve better matches, as long as the lattice spac
remain sufficiently small. In this section, we explore the
fects of an underlying grid on the adaptive design procedu
Also, more advanced techniques are implemented for the
merical optimization, including hybrids of the genetic alg
rithm, simulated annealing, and the guided random w
method.

In Fig. 7, adaptive design results are shown for syste
with 48 atoms on a square lattice with spacing 0.01. T
length scale is set by the linear size of the two-dimensio
box (48348) to which the particles are confined. These s
tems are in the dilute limit, and hence the convergence to
target functions, chosen to be the same as in the prece
section, is good. Also, because of the larger number of p
ticles, there are less finite size effects. For the top-hat ta
function one obtains a small matching error ofD
50.000 643, for the symmetric two-peak function one fin
D50.000 605, and for the asymmetric two-peak function
error is D50.150 347. Thus, analogous to the continuo
case, the more symmetric targets are easier to achi

FIG. 7. Adaptive design of clusters with 48 atoms on a discr
lattice. The~a! flat, ~b! symmetric two-peak, and~c! asymmetric
two-peak densities of states are the same as discussed in the
ceding section. The corresponding atomic configurations are sh
in ~d!, ~e!, and~f!.
0-5
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THALKEN, CHEN, LEVI, AND HAAS PHYSICAL REVIEW B 69, 195410 ~2004!
Again, clustering into dimers is observed for the partic
hole symmetric target functions, whereas trimers are the
ferred building blocks for the asymmetric target. Sin
atomic densities in these examples were chosen to be in
dilute limit, boundary effects and interactions between
building blocks are small. The resulting configurations ha
the character of liquids, governed by weak interactions
tween the molecular building blocks, and relatively stro
confining forces that lead to the formation of dimers a
trimers.

Next, let us explore the dependence of these solution
the coarseness of the underlying lattice. In Fig. 8, the g
spacing is varied over two orders of magnitude from 0.01
to 1.0. As expected, the convergence to the target top
function deteriorates dramatically as the substrate is m
coarser. For the smallest spacing of 0.01 one converges
final error of D50.284 57, for a spacing of 0.3 the error
D52.450 47, for a spacing of 0.7 the error becomesD
53.817 79, and for the coarsest case with spacing 1.0
error isD536.3721, indicating failure of convergence. Th
corresponding configurations in Fig. 8 show a strong dep
dence of the clustering sizes as the system is trying to c
with less available phase space to match the target func
For the finest grid spacing@Fig. 8~a!# one observes almos
entirely isolated dimers. As the spacing is increased@Fig.
8~b!#, a few small strings and groups are formed. At g
spacing 0.7@Fig. 8~c!#, the solution is made up mostly o
long strings and dimers in close proximity to each oth
Ultimately, for the coarsest grid spacing of 1.0@Fig. 8~d!#,
the final configuration consists of square and rectang
blocks of atoms. This result demonstrates that there is a

FIG. 8. Effect of the coarseness of the underlying lattice on
formation of building blocks. A total number of 32 atoms are co
fined to a 32332 square box. The target function is the top-h
density of states. The grid spacing is varied:~a! 0.01, ~b! 0.3, ~c!
0.7, and~d! 1.0.
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erarchy of building blocks. The most suitable building bloc
for the given target function are dimers. When these beco
less available due to lattice constraints, the adaptive met
selects higher order solutions, i.e., larger size clusters
order to cope with the more restricted phase space of p
sible configurations. Hence, for each level of coarsene
adaptive design discovers solutions that enable—up t
given degree of accuracy—a targeted system response.

By widening the grid spacings and keeping the box s
constant, the density of atoms in the system is effectiv
increased, and simultaneously the available energy levels
spaced further apart. ‘‘Density’’ here is meant in terms
particles per available lattice sites, not particles per squ
unit. Let us examine these dependencies by varying
power law governing the atomic overlaps@Eq. ~2!#, and by
increasing the number of atoms, i.e., the filling fraction, on
fixed lattice. Results for the achieved convergence are sh
in Fig. 9. These demonstrate that excellent target matc
can be achieved in the dilute limit with filling densities of
few percent. For larger coverages, the numerical search
comes exponentially less effective, indicating increas
frustration effects that need to be addressed by global up
ing schemes. Higher power laws imply effective short
range atomic overlaps, thus rendering the system more
lute. This is reflected in Fig. 9, where the departure from
regime of negligible matching errors is pushed toward hig
filling percentages asa in Eq. ~2! is increased.

Some aspects of the long-range tight-binding model o
substrate have already been confirmed experimentally u
scanning tunneling microscopy~STM! to precisely position
gold atoms on the surface of a nickel-aluminum crystal. I
recent study performed at UCI by Dr. Ho and co-worker3

STM measurements show that the splitting in the value
eigenenergies for Au dimers on NiAl depends inversely
Au atom separation corresponding toa51. Here, the grid
spacings are dictated by the 0.29 nm lattice periodicity
available add-atom sites on the NiAl substrate. Remarka
the power-law dependence of the effective overlapst i j be-

e
-
t

FIG. 9. Effect of the density of atoms and the power-law dep
dence of the tight-binding overlap integral the convergence of ad
tive quantum design.
0-6



io
y

er
i

il
m
tiv
r

u
e

te
in
ns
dr
ge
la
ce
in

ic
o
r

e-
pu
a
e
s
ig
or
n
ni

ar
is
to
n
w

tu
rg
o

or
y.

e-
fo
P

03
th
u

ed
he
d
d.

-
the
ates

rd-
be
ace,
ich
m

u-
e a
id
lar
on-

of

ble
lest
m-

h

t a
a

for
cal

pre-
ini-
t a
is
l

s a

n-
the
d,
to
the
an-
ly

hill
es
riod,
em
In
dle
ar-

is
dent
u-

ADAPTIVE QUANTUM DESIGN OF ATOMIC CLUSTERS PHYSICAL REVIEW B69, 195410 ~2004!
tween the deposited atoms takes into account interact
with the substrate which are typically difficult to model b
first-principles computations.

VI. CONCLUSIONS

In this work, adaptive quantum design techniques w
applied to tailor the quasiparticle density of states of atom
clusters, modeled by the long-range tight-binding Ham
tonian. Broken-symmetry spatial configurations of ato
were optimized to match target spectra. By applying adap
search algorithms, it was shown that matches to target
sponses can be achieved by forming hierarchies of molec
building blocks that depend on system constraints. For
ample, symmetric top-hat and two-peak target densities
states can be achieved by forming lattices of weakly in
acting dimers. While these are the elementary build
blocks for particle-hole symmetric case target functio
more complex molecules, such as the trimer and the qua
mer, are found to dominate solutions for asymmetric tar
functions. Implementation of this approach on discrete
tices, corresponding to finite configuration space, introdu
frustration effects that destabilize the elementary build
blocks in the limit of coarse grid spacings.

The core task of adaptive quantum design is the numer
search for global minima in typically shallow landscapes
configurations with many local minima. Since this procedu
typically requires many function calls, an efficient impl
mentation on parallel computers is necessary. For the
poses of this study, the complexity of the physical model w
minimized in order to limit the computational expens
While the long-range tight-binding model can be viewed a
semirealistic testing ground for adaptive quantum des
techniques, it is crucial to apply these algorithms to m
sophisticated models that include, among other ingredie
orbital directionality, spin degrees of freedom, and electro
correlations. Furthermore, adaptive design is applicable
related areas in nanotechnology, including the design
electro-optic components6 and RF systems.8

Our enthusiasm for adaptive quantum design is, in p
driven by the potential for scientific and technological d
covery built into the methodology. We find it appealing
perform machine-based searches for new configurations,
components, and new subsystems, as we believe these
inevitably create new understanding, heuristics, and in
ition. The fact that searches are performed in an ultrala
configuration space virtually guarantees the discovery
completely new designs and a much more thorough expl
tion of the possibilities and capabilities of nanotechnolog
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APPENDIX: OPTIMIZATION AND SEARCH
ALGORITHMS

The optimization algorithms used in this work are bas
on local updates of atomic positions in order to minimize t
errorD defined in Eq.~6!. Each atom in the system is visite
periodically, and a trial change of its position is attempte
Depending on the response inD and on the specific algo
rithm, this trial step is either accepted or rejected. For
case of continuous configuration spaces, these local upd
are random shifts of positions within a given radius. A ha
core constraint is implemented which forbids atoms to
placed on top of each other. For discrete configuration sp
a stochastic distribution function is used to decide wh
sites in the neighborhood of the original position of an ato
should be visited in a trial step. While this function is nat
rally peaked at nearest-neighbor sites, it has to includ
finite probability of longer-range updates in order to avo
getting stuck in local minima of search space. The particu
results discussed in this appendix are obtained for the c
tinuous case.

The Broydn method is a multidimensional extension
the one-dimensional secant method.5 Unfortunately, its glo-
bal convergence is rather poor for more than 20 varia
parameters. Therefore, it is only applicable to the smal
system sizes, and is not useful for the nonlinear multipara
eter searches required for adaptive quantum design.

In the guided random walk or ‘‘downhill method,’’ eac
random step that results in a smaller target errorD is
accepted.6 Random steps are trial spatial variations abou
particle’s position. This guided random walk technique is
quickly implemented power horse. However, especially
shallow landscapes of solutions it gets easily stuck in lo
minima.

Simulated annealing uses an effective temperature re
senting the likelihood of accepting a step that does not m
mize the function. This temperature is lowered slowly, a
rate of 10%, with each iteration. The initial temperature
taken asTinit55t. This method is better at avoiding loca
minima than the previous techniques. However, it take
relatively longer time to converge.

The triggered annealing method is a hybrid of the dow
hill and the simulated annealing method. It implements
downhill method until minimizing steps become hard to fin
at which point the simulated annealing method is used
escape from local minima. Parameters are chosen to be
same as for the simulated annealing method. Triggered
nealing tends to converge relatively quickly if there are on
a few local minima.

The particle replacement method uses the simple down
method for guided random updates. In addition, it identifi
particles that have not been updated for an extended pe
because of being stuck in a local minimum, and assigns th
to a new random position within the lattice boundaries.
our implementation, a particle is replaced if there are ten i
iterations without a successful downhill update for that p
ticular particle. Note that this particle replacement update
different from random step updates because it is indepen
of the previous position of the particle, and thus it is partic
0-7
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larly powerful in avoiding physical blocking of updates
lower dimensional systems.

In genetic algorithms a population of possible solutions
created. Those that best minimize the function are allowe
take part in creating a new generation of possible solutio7

These methods are generally good at avoiding local mini
and are also easily implemented on parallel computers. T
typically require more function calls than other search al
rithms.

In order to illustrate the efficiency of these various a
proaches each method is used to match a flat top-hat ta
function on a one-dimensional lattice with 24 tight-bindin
atoms and a box size of 96. Particles exiting the box fr
one end enter it from the other side via periodic bound

FIG. 10. Comparison of the convergence of several optimiza
algorithms. The errorD is shown as a function of computer ru
time. The inset uses a logarithmic scale forD.
s

tt.
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conditions. The target density of states is chosen to be
symmetric top-hat function, with poles evenly spaced b
tween E524t and 4t. All of these benchmark runs ar
started with atoms placed randomly along a chain. The co
puter is a Pentium III 1 GHz with 2GB pc133 memory, an
the additional seven nodes used by the genetic algori
method are Pentium III 850 MHz processors with 1 G
memory. Each method is run for 600 s.

As shown in Fig. 10, all methods, with the exception
the genetic algorithm, converge rapidly within the fir
minute of run time, and show only relatively small corre
tions afterwards. The two techniques with the fastest con
gence~inset of Fig. 10! are the downhill and the simulate
annealing methods. However, their asymptotic error fu
tions remain relatively large, indicating that they get eas
stuck in local minima. In general, simulated annealing
expected to give better convergence than the simple down
method. On longer time scales than shown in Fig. 10 thi
indeed the case. The reason for the rather poor converg
within the first 10 min shown in this figure is that simulate
annealing pushes atoms to explore metastable, frustr
configurations. However, for the one-dimensional case
was used for this benchmarking it is particularly difficult fo
this method to find its way out of such metastable states
higher dimensions~less amenable to benchmarking! there is
no such problem.

In contrast, the triggered annealing and particle repla
ment methods yield much better matches to the target fu
tion, while still converging relatively fast. As shown in th
inset, the annealing methods sometimes accept trial step
the ‘‘wrong’’ direction in order to avoid local minima. Fi-
nally, the genetic algorithm takes a relatively long time
converge. However, it yields by far the best match to
target density of states after about 7 min run time. In orde
ensure best matches to the target, this last method is th
fore used whenever the computational effort allows it.
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