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Adaptive quantum design identifies the best broken-symmetry configurations of atoms and molecules that
enable a desired target function response. In this work, numerical optimization is used to design atomic clusters
with specified quasiparticle densities of states. The dominant self-assembled building blocks of these engi-
neered quantum systems are found to depend on the symmetry of the target function. For example, particle-
hole symmetric spectra can be constructed from a dilute configuration of atomic dimers, whereas more com-
plex structures such as trimers and quadrumers are required for asymmetric target functions. The convergence
of the optimization algorithms depends on the shape of the target function, the density of atoms, and constraints
due to substrates and boundary conditions. Hybrids of steepest-descent methods, simulated annealing, and
genetic algorithms are found to be most efficient.
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[. INTRODUCTION Adaptive quantum design solves the inverse problem by nu-
merically identifying the best broken-symmetry spatial con-
In the near future, it will likely be possible to control the figuration of atoms and molecules that produce a desired
precise spatial positions of atoms and molecules using th&arget function response.
experimental techniques now being developed by nano- The two major ingredients of adaptive quantum design are
science. To complement these emerging capabilities it ishe physical model, which in this work evaluates the elec-
clear that a new set of theoretical tools has to be developed toonic density of states for a particular spatial arrangement of
assist in the exploration of a potentially vast number of atonthe atoms, and the search algorithm that finds the global
configurations and a corresponding enormous range of physminimum in the parameter space of all possible configura-
cal properties. In this paper, we outline an approach, whicliions. This problem is typically highly underdetermined in
we call “adaptive quantum design,” that sets out to addresshe sense that there can be several atomic configurations that
this challenging task. In contrast to classical systems, atomigield a system response very close to the desired target func-
scale devices exhibit quantum fluctuations and collectivedion. Often, the associated landscape of solutions is shallow
guantum phenomena caused by particle interactions. Besidasd has many nearly degenerate local minima.
offering an excellent testing ground for models of correlated Adaptive quantum design therefore relies heavily on effi-
electrons, they also force us to reconsider conventional paraient algorithms that accurately model the interacting system
digms of condensed matter physics, such as crystal symmeand find its optimal configuration, i.e., the global minimum
tries that are imposed by nature. In some instances, sudh the available parameter space that yields the best match to
symmetries need to be explicitly broken in order to enable othe desired target function. This target response may be a
optimize a desired system response. Consider, for examplspecific angular transmission of a photonic crystal, a fine-
the quasiparticle density of states in tight-binding systemstuned Josephson current along a superconducting junction
which is the subject of the present study. In translationallyarray, or an energy-dependent density of states profile of an
invariant structures, i.e., crystals, it is well known that theatomic cluster—the case on which we focus here. In this
spectral response function exhibits Van Hove singularities aivork, various numerical search tools are applied, including
positions of low dispersion, such as the band edges in guided random walk, simulated and triggered annealing, and
one-dimensional chain or the band center in a two-genetic algorithms. In particular the last set of techniques is
dimensional square lattice. These enhancements of the demost efficiently implemented on parallel computers. It is ob-
sity of states can be very useful in amplifying system re-served that in practice hybrids of these methods yield the
sponses such as optical conductivity at specific incidenbest results, i.e., fast convergence towards a global mini-
energies. It is therefore important to be able to control thenum.
positions and shapes of such features by adaptive design The particular example of a long-range tight-binding
techniques applied to models which capture the essential derodel is chosen for this study because it captures essential
grees of freedom of interacting atomic clusters. features of correlated quantum mechanical systems, and yet
Traditional ad hoc methods for the design of nanoscale permits fast numerical diagonalization of relatively large
devices will likely miss many possible configurations. At the clusters with broken translational symmetry. In a typical op-
same time, it is unrealistic to expect individuals to manuallytimization run, these “function calls” occur 100—10 000
explore the vast phase space of possibilities for a particulaimes. This model is therefore suitable for developing
device function. The proposed solution to this difficult de-and testing adaptive design algorithms, and should be viewed
sign problem is to employ machine-based searches of coras an initial step towards the design of atomic clusters. The
figuration space that enable user-defined target functiongjoal of this work is to test the applicability and limits of
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adaptive design techniques on a simple but nontrivial quan- S S L L I L I B L B N B
tum system. (a) (b)

II. LONG-RANGE TIGHT-BINDING MODEL

N(E)

The tight-binding approach is an effective tool to describe
the band structure of electronic systems. It is commonly used
to model the relevant bands close to the Fermi level, ob- [ Ll
tained from complex density-functional theory calculations. (©) (d)
Since in this work symmetry-breaking, nonperiodic configu-
rations are considered, a long-range variant of the tight-

—_
binding model with overlap integrals depending on the vari- EJ/
able interatomic distance has to be used. Its Hamiltonian is Z.
given by
{ T I I T | P I |
_ PP 64202 4 6420246
H EJ tij(clci+cic)), D) E/t E/t

FIG. 1. Density of states in spatially invariant tight-binding sys-
wherec] andc; are creation and annihilation operators at atems with periodic boundary conditions) Nearest-neighbor chain
siter;, and the sum over pairs of atoms is restricted to avoidno long-range overlap integjakith 30 atoms(b) Same asa), but
double counting. Here the spatial decay of the overlap intewith long-range overlaps according to E@). (c) Nearest-neighbor

gralt; ; is parametrized by a power law, square lattice with 400 atom&d) Same agc), but with long-range
. overlaps.
t Ill. TARGET FUNCTIONS AND CONVERGENCE
tij==—=—_. @) CRITERION
ri—rjl

While “nature” gives us densities of states that are con-
where the exponent is taken to be 3.0 throughout the paper Strained by the dimensionality and symmetry of the underly-
unless mentioned otherwid@his parametrization reflects an iNg lattice, our objective is to engineer spectral responses
algebraic variation of the overlap integral with interatomic With specific shapes that are useful in designing nanoscale
separation. The choice of sign in the Hamiltonian follows thedevices. For example, we may wish to produce a quasi-two-
convention fors orbitals. However, this simple implementa- dimensional spectrum in a one-dimensional system or to
tion of the tight-binding model does not account for the or-concentrate spectral weight in particular energy windows.
bital directionality of realistic Au, Ag, or Pd atomic wave 1hese goals are achieved by placing the atomic constituents
functions. More sophisticated and numerically expensivéNto optimized symmetry-breaking configurations which are
techniques, such as the local density approximation, would€teérmined by numerical searches. S
be needed to make quantitative predictions for these systems. The specific target functions that are studied in this work

The Hamiltonian matrix of the long-range tight-binding @€ shown in Fig. 2. They are) a flat top-hat density of
model in the basis of single-particle states is nonsparse, arjates centered &=0,
only its diagonal matrix elements vanish. In order to obtain _
the spectrum, the matrix is diagonalized numerically for fi- N(E)targer= (B~ Eo) 6(E+Eo), )
nite clusters. In Fig. 1, the resulting densities of states ofvhere 6(x) is the Heaviside function, anB, is an energy
translationally invariant chains and square lattices are showsut off, (b) a symmetric two-peak function, centered Bt
for the nearest-neighbor tight-binding model wih=t4; ; =0,
in Figs. Xa) and Xc), and for the case of long-range overlap
integrals in Figs. @b) and Xd). Characteristic Van Hove sin- N(E)arget= 0(E—Ec) 0(E+E¢y) + (E—Ecq) O(E+E(y),
gularities are observed, in one dimension at the band edges, (4)

and in two dimensions at the band center. For the Iong—ranggnd(c) a particle-hole symmetry-breaking function with two

model, the particle-hole symmetry is broken because of frusﬂlnequal peaks, i.e., more spectral weight on the quasihole

tration int_rodL_Jced by th_e competing ov_erlaps, Ieading_toside (E<0) than on the quasielectron side*0) of the
asymmetries in the density of states. While the system size ectrum

in Fig. 1 are chosen to be rather large in order to make '
contact with the familiar thermodynamic limit, there are still N(E) arger= O(E—Ecp) 0(E+Ecy) + O(E—Egs) O(E+Ecg).
some visible finite-size remnants, i.e., a faint pole structure (5)
due to the discreteness of the system. These features become

much more pronounced for the few atom clusters that are In systems with finite numbers of tight-binding atoms,

studied in the following sections of this paper. these continuous shapes are approximated by equally spaced
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which is the least-square difference between the system re-
() (b) © sponse for a given configuration and the target response
function. We have explored a number of numerical tech-
nigues, including the Newton-Raphson steepest descent
method, simple downhill random walk, simulated and trig-
gered annealing, and genetic algorithms. The advantages and
- disadvantages of these techniques are briefly discussed in the
Umm Appendix. In general, it is found that hybrids of these meth-

ods tend to work best. In the following section, we focus on
adaptive design of atomic clusters in continuous configura-
i R R | tion space without any restrictions to underlying discrete lat-
b _4'_2' 0'2 ' - _4'_2 R tices. In this case, the search space is infinite which generally
E/t E/t E/t allows better convergence to a given target response than in
finite configuration space. However, some experimental real-
FIG. 2. Target densities of states used in this wegk:top-hat  izations of such structures require deposition of atoms on
function, centered aE=0, (b) particle-hole symmetric two-peak substrates with discrete lattice structufe$Therefore, this

function, and(c) asymmetric two-peak function. For systems with case is addressed separately in the subsequent section.
finite numbers of particles these shapes are approximated by quasi-
particle peaks.

Target Density of StatesN(E)

1

IV. ATOMS UP DESIGN OF TIGHT-BINDING CLUSTERS
poles within the energy windows whel{E) 4 4e¢ iS @ non- IN CONTINUOUS CONFIGURATION SPACE
vanishing constant. Here, th&functions are given a finite i . . .
width of 0.02. As more atoms are added to the system, thes The_ first target density of states we would like to study in
peaks merge together, approaching the bulk result. For oth taél 'f the parEcOIe-h;])Ie symrlgetrlc to_rpr;ha;c fur:g:tmn, cen-
nonflat target functions the quasiparticle peak spacing can b red at energ§ =0, shown in Fig. £a). This function rep-

varied, e.g., following a Gaussian or Lorentzian shape Naturesents a constant density of states for a bulk solid between

rally, not all targets can be achieved equally well. Factorsthe energy cutoffs-E,, giving a bandwidtW=2E. . nge,
that influence the achievable match to a target include th&/€ CN00S€&E=3t. However, it should be noted that with the
number of available atoms and, as will be shown, a continugqapt've_ quantum design a_p_proach we are not _restr_lcted to
ous or discrete number of accessible spatial positions. Th@“S chplce, and target densities of states with quite different
dimensionality of the system poses additional constraints. (pandwidths can be matched, although often to a lesser degree
particular, there are less available configurations in loweP' accuracy. . . '
dimensions. This study focuses on three prototype spectral In Fig. 3,_the so_lutl_on for a system W'.th 16 a_ltoms confined
responses which are targeted by numerically optimizing cont® & POX with periodic boundary conditions is shown. The
figurations of clusters with up to 48 atoms in two spatialgu'ded. random walk mgthod_ is applied to optimize the con-
dimensions. f!gurayon of atoms by iterative local upqiates of their posi-
The optimization algorithms seek to minimize the devia-lons |n.ord'er to match the top-hat density of states. As ob-
tion from a given target density of states, defined by the erro erve;d in Figs. @) an_d 30), good_ convergence (o the target
function unction can be achieved for this case after less than 2000
updates. A contour plot of the potenti®);—t;; /|r;—r;|* for
. the resulting spatial configuration is shown in Figh)3 For
A:f dE[N(E)—N(E)ta,geJZ, (6) th'is target function one disc_overs the'forma'ltion of dimers
o with a wide range of interdimer and intradimer spacings.
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FIG. 3. Adaptive quantum design applied to 16 atoms in a two-dimensional box with periodic boundary conditions. The target density of
states is a symmetric top-hat function with bandwidth Bhe atomic configurations are optimized by applying a guided random walk
algorithm to the long-range tight-binding modé®) The best matching solutiorib) Contour plot of the potential of the resulting spatial
configuration.(c) Convergence to the target function, Jg@\), with the number of updates.
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These self-assembled building blocks have variable directrum of the top-hat function can be covered. The poles close
tional orientation and are closely packed. to the band center§=0) are provided by the less tightly
To explore the generic aspects of this result, let us novbound dimers. For the two-peak target function, the dimer
turn to the two-peak target function shown in FigbR This  building blocks required to realize the target spectrum are
density of states has a gap in the center of the spectrum, @&sore tightly bound, and the intradimer spacings need to vary
may be desired for the construction of two-state systemess to achieve this target.
such agg bits. As shown in Figs. @) and 4c), the conver- The idea that dimers can be used as building blocks for
gence to this target function is not quite as good as for thehe particle-hole symmetric target functions strictly applies
top-hat function, but saturation occurs already at half theonly to isolated dimers, i.e., the dilute limit, or when poten-
number of iterations compared to the previous example. Intial gradients across dimers pairs from the presence of adja-
terestingly, the optimized spatial configuration that is foundcent atoms do not break particle-hole symmetry. The absence
in Fig. 4(b) also displays a preference for dimer formation. of such gradients, even for relatively high atom densities in a
In the long-range interacting systems we are studying it islong-range interacting system, accounts for the success of
at least at first sight, not obvious why these target functionglimers in satisfying the target function.
prefer dimer building blocks. Let us address this question by Lower symmetry building blocks, such as trimers and
examining the individual spectra of the molecular buildingquadrumers shown in Fig. 5, can achieve more complex tar-
blocks shown in Fig. 5. Each dimer molecule contributes toget functions, in particular, those with broken particle-hole
the density of states a positive and negative pole with enesymmetry. Due to frustration, trimer molecules intrinsically
gieseE==*t,,, wheret,, is the hopping integral between the have asymmetric densities of states with unequal spectral
two participating atoms. The zero-energy quasiparticle peakaeights on the electron and the hole side of their spectra.
of two isolated atoms are split into bonding and antibondingQuadrumers have a symmetric spectral response in the ab-
combinations once they form dimer molecules. Thereforesence of longer-range frustrating interactions. As an example
isolated dimers are ideal building blocks for particle-holeof how these building blocks enable more complex target
symmetric densities of states, such as the top-hat and ttfenctions, let us consider the asymmetric two-peak density of
two-peak target function. The intradimer spacing determinestates given by Eq5) and shown in Fig. @), which has a
the positions of th&e= *1,, poles via Eq.2). With an ap-  narrow upper peak and a wider lower peak, separated by a
propriate distribution of these distances the full-target specgap. In Fig. 6 it is observed that an approximate match can

FIG. 5. Spectral response of tight-binding
dimers, trimers, and quadrumer&) Potential
contour plot of dimer, trimer, and quadrumer of
t size Ly. (b) In the dimer, the single-atom level

N(E)
§
ff—-_l-‘-—_

Energy, E
L QO e~

w
= 20 (dashed ling is split symmetrically(solid line).
= s Competing interactionéfrustration in the trimer
u / and quadrumer lead to asymmetric densities of
2 states. The strength of the frustration depends on
. the separatiof.. (c) Spectral peak positions as a
i " 2 function of normalized distance/L, for dimer,
— :", i = trimer, and quadrumer. The spectra fofly=1
1) H n (=] 0 . .
z gl g are shown as solid lines andL,=3 as dashed
o w /'”— lines in (b).
it 2t
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be achieved by the adaptive method. As expected, the buildible configurations that are available in the continuous case,
ing blocks for this particle-hole asymmetric target functionthus deteriorating convergence properties of the optimization
are combinations of dimers, trimers, and quadrumers, whiclprocedure. In practice, we find that the feasibility of compu-
partially combine into larger clusters. Obviously, in order totations for larger numbers of atoms in the discrete case helps
achieve asymmetric target functions more complex buildingo achieve better matches, as long as the lattice spacings
blocks are required. Especially for systems which contaimemain sufficiently small. In this section, we explore the ef-
only a small number of atoms it is important whether thefects of an underlying grid on the adaptive design procedure.
required building blocks are available, and whether there arélso, more advanced techniques are implemented for the nu-
nonparticipating unbound atoms that may deteriorate convemerical optimization, including hybrids of the genetic algo-
gence and match to the target function. rithm, simulated annealing, and the guided random walk
Let us finish this section by addressing the convergencenethod.
properties of the three cases that were discussed. So far, only In Fig. 7, adaptive design results are shown for systems
the simplest guided random walk optimization method waswith 48 atoms on a square lattice with spacing 0.01. The
considered in which every “downhill step” is accepted. length scale is set by the linear size of the two-dimensional
These downhill steps are local updates of individual atomidox (48x 48) to which the particles are confined. These sys-
position that lead to a better match of the spectrum to théems are in the dilute limit, and hence the convergence to the
target density of states. Especially for the most symmetrig¢arget functions, chosen to be the same as in the preceding
target function, this algorithm converges efficiently, with a section, is good. Also, because of the larger number of par-
small remaining error. For the symmetric two-peak function,ticles, there are less finite size effects. For the top-hat target
convergence occurs even faster because the required dimfeinction one obtains a small matching error of
building blocks are more uniform than for the first case.=0.000643, for the symmetric two-peak function one finds
However, the remaining error is slightly larger, indicating A=0.000 605, and for the asymmetric two-peak function the
that this may be a metastable solution which could be imerror is A=0.150347. Thus, analogous to the continuous
proved by global updates in which whole subclusters arease, the more symmetric targets are easier to achieve.
simultaneously updated. Finally, the convergence plot for the

asymmetric two-peak target functigfig. 6(c)] shows sev- T T T T T T T T [T T T T
eral plateaus, indicating metastable configurations that ex: (a) (b) (c)
hibit a high resistance against local updates. For this case, _
much larger number of local updates is required to achieve =
an acceptable match. Hence, more complex target function %<
clearly call for more sophisticated numerical search tools,
including annealing steps, parallelization, and global updat- Lilalalal L LY 1 LN
ing schemes when available. 4202 4 420 2 4 4202 4
E/t E/t E/t
50 — ———— ————
V. ADAPTIVE DESIGN IN DISCRETE CONFIGURATION N 40 ¢ % 0 X, (d)_ _c; QOO o(e)' [ © (f)_
SPACE S of o Lol o> %O_ . o ]
In the preceding section local updates were considerecZ 20 - 8%y o021l ° 19 %@ o
which allow atomic positions to change continuously within £ ol & %‘9 2 %0 L o o
a given radius. However, for the case of atoms depositedor L. .. .. .0 L1020 . . 2

a substrate with a given lattice structure, the set of available 11(; 20 30 ;'(0 500 llg 2030 ;{0 500 11(3’ 2030 ;(0 50
positions is usually discrete, although it may be very large. osition osition osition

This has significant consequences for the adaptive design riG, 7. Adaptive design of clusters with 48 atoms on a discrete

approach. The' search space of solutions is finite i'n thi§ CaSgittice. The(a) flat, (b) symmetric two-peak, an¢c) asymmetric
which makes it feasible to study more atoms with similartwo-peak densities of states are the same as discussed in the pre-

computational effort compared to the continuous case. At theeding section. The corresponding atomic configurations are shown
same time, the discreteness of the lattice can prohibit favorin (d), (e), and(f).
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erarchy of building blocks. The most suitable building blocks

FIG. 8. Effect of the coarseness of the underlying lattice on thefor the given target function are dimers. When these become
formation of building blocks. A total number of 32 atoms are con-less available due to lattice constraints, the adaptive method
fined to a 3X 32 square box. The target function is the top-hatselects higher order solutions, i.e., larger size clusters, in
density of states. The grid spacing is vari¢a: 0.01, (b) 0.3, (c) order to cope with the more restricted phase space of pos-
0.7, and(d) 1.0. sible configurations. Hence, for each level of coarseness,

adaptive design discovers solutions that enable—up to a

Again, clustering into dimers is observed for the particle-given degree of accuracy—a targeted system response.
hole symmetric target functions, whereas trimers are the pre- By widening the grid spacings and keeping the box size
ferred building blocks for the asymmetric target. Sinceconstant, the density of atoms in the system is effectively
atomic densities in these examples were chosen to be in thacreased, and simultaneously the available energy levels are
dilute limit, boundary effects and interactions between thespaced further apart. “Density” here is meant in terms of
building blocks are small. The resulting configurations haveparticles per available lattice sites, not particles per square
the character of liquids, governed by weak interactions beunit. Let us examine these dependencies by varying the
tween the molecular building blocks, and relatively strongpower law governing the atomic overlafi&g. (2)], and by
confining forces that lead to the formation of dimers andincreasing the number of atoms, i.e., the filling fraction, on a
trimers. fixed lattice. Results for the achieved convergence are shown

Next, let us explore the dependence of these solutions oim Fig. 9. These demonstrate that excellent target matches
the coarseness of the underlying lattice. In Fig. 8, the grictan be achieved in the dilute limit with filling densities of a
spacing is varied over two orders of magnitude from 0.01 ugew percent. For larger coverages, the numerical search be-
to 1.0. As expected, the convergence to the target top-hatomes exponentially less effective, indicating increasing
function deteriorates dramatically as the substrate is madtustration effects that need to be addressed by global updat-
coarser. For the smallest spacing of 0.01 one converges toiag schemes. Higher power laws imply effective shorter-
final error of A=0.28457, for a spacing of 0.3 the error is range atomic overlaps, thus rendering the system more di-
A=2.45047, for a spacing of 0.7 the error becomes lute. This is reflected in Fig. 9, where the departure from the
=3.81779, and for the coarsest case with spacing 1.0 theegime of negligible matching errors is pushed toward higher
error isA=236.3721, indicating failure of convergence. The filling percentages a& in Eg. (2) is increased.
corresponding configurations in Fig. 8 show a strong depen- Some aspects of the long-range tight-binding model on a
dence of the clustering sizes as the system is trying to copgubstrate have already been confirmed experimentally using
with less available phase space to match the target functioscanning tunneling microscogTM) to precisely position
For the finest grid spacinfFig. 8a)] one observes almost gold atoms on the surface of a nickel-aluminum crystal. In a
entirely isolated dimers. As the spacing is increaf€ig.  recent study performed at UCI by Dr. Ho and co-workers,
8(b)], a few small strings and groups are formed. At grid STM measurements show that the splitting in the value of
spacing 0.7[Fig. 8(c)], the solution is made up mostly of eigenenergies for Au dimers on NiAl depends inversely on
long strings and dimers in close proximity to each otherAu atom separation corresponding é&=1. Here, the grid
Ultimately, for the coarsest grid spacing of 1Big. 8d)],  spacings are dictated by the 0.29 nm lattice periodicity of
the final configuration consists of square and rectangulaavailable add-atom sites on the NiAl substrate. Remarkably,
blocks of atoms. This result demonstrates that there is a hthe power-law dependence of the effective overlgpde-
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tween the deposited atoms takes into account interactions APPENDIX: OPTIMIZATION AND SEARCH
with the substrate which are typically difficult to model by ALGORITHMS

first-principles computations. o . L
P P P The optimization algorithms used in this work are based

on local updates of atomic positions in order to minimize the
VI. CONCLUSIONS error A defined in Eq(6). Each atom in the system is visited

In this work, adaptive quantum design techniques Weré)erlodmfally, and a trial change of its position is -alttempted.
applied to tailor the quasiparticle density of states of atomid®€Pending on the response i and on the specific algo-
clusters, modeled by the long-range tight-binding Hamil-fithm, this tr!al step is glther .accepted or rejected. For the
tonian. Broken-symmetry spatial configurations of atomsca@se of continuous confl_g'uratlor) spaces, these .Iocal updates
were optimized to match target Spectra_ By app|y|ng adaptivélre I’al’ldom Sh|fts Of pOSItlonS W|th|n a g|Ven rad|US. A hard'
search a|gorithm5, it was shown that matches to target recore constraint is implementEd which forbids atoms to be
sponses can be achieved by forming hierarchies of moleculdtaced on top of each other. For discrete configuration space,
building blocks that depend on system constraints. For exa stochastic distribution function is used to decide which
ample, symmetric top-hat and two-peak target densities ofites in the neighborhood of the original position of an atom
states can be achieved by forming lattices of weakly intershould be visited in a trial step. While this function is natu-
acting dimers. While these are the elementary buildingally peaked at nearest-neighbor sites, it has to include a
blocks for particle-hole symmetric case target functionsfinite probability of longer-range updates in order to avoid
more complex molecules, such as the trimer and the quadrgetting stuck in local minima of search space. The particular
mer, are found to dominate solutions for asymmetric targetesults discussed in this appendix are obtained for the con-
functions. Implementation of this approach on discrete lattinuous case.
tices, corresponding to finite configuration space, introduces The Broydn method is a multidimensional extension of
frustration effects that destabilize the elementary buildinghe one-dimensional secant metﬁ’odnfortunately, its glo-
blocks in the limit of coarse grid spacings. bal convergence is rather poor for more than 20 variable

The core task of adaptive quantum design is the numericgdarameters. Therefore, it is only applicable to the smallest
search for global minima in typically shallow landscapes ofsystem sizes, and is not useful for the nonlinear multiparam-
configurations with many local minima. Since this procedureeter searches required for adaptive quantum design.
typically requires many function calls, an efficient imple-  In the guided random walk or “downhill method,” each
mentation on parallel computers is necessary. For the purandom step that results in a smaller target erforis
poses of this study, the complexity of the physical model wasiccepted. Random steps are trial spatial variations about a
minimized in order to limit the computational expense.particle’s position. This guided random walk technique is a
While the long-range tight-binding model can be viewed as ajuickly implemented power horse. However, especially for
semirealistic testing ground for adaptive quantum desigrshallow landscapes of solutions it gets easily stuck in local
techniques, it is crucial to apply these algorithms to moreminima.
sophisticated models that include, among other ingredients, Simulated annealing uses an effective temperature repre-
orbital directionality, spin degrees of freedom, and electronigenting the likelihood of accepting a step that does not mini-
correlations. Furthermore, adaptive design is applicable tegnize the function. This temperature is lowered slowly, at a
related areas in nanotechnology, including the design ofate of 10%, with each iteration. The initial temperature is
electro-optic componerftand RF system®. taken asT;,;=5t. This method is better at avoiding local

Our enthusiasm for adaptive quantum design is, in partminima than the previous techniques. However, it takes a
driven by the potential for scientific and technological dis-relatively longer time to converge.
covery built into the methodology. We find it appealing to  The triggered annealing method is a hybrid of the down-
perform machine-based searches for new configurations, nemill and the simulated annealing method. It implements the
components, and new subsystems, as we believe these wilbwnhill method until minimizing steps become hard to find,
inevitably create new understanding, heuristics, and intuat which point the simulated annealing method is used to
ition. The fact that searches are performed in an ultralargescape from local minima. Parameters are chosen to be the
configuration space virtually guarantees the discovery okame as for the simulated annealing method. Triggered an-
completely new designs and a much more thorough exploranealing tends to converge relatively quickly if there are only
tion of the possibilities and capabilities of nanotechnology. a few local minima.

The particle replacement method uses the simple downhill
method for guided random updates. In addition, it identifies
particles that have not been updated for an extended period,

We are grateful to loan Gheorma, Weifei Li, Peter Little- because of being stuck in a local minimum, and assigns them
wood, Omid Nohadani, Tommaso Roscilde, and Rong Yu fotto a new random position within the lattice boundaries. In
discussions. We acknowledge financial support by DARPAour implementation, a particle is replaced if there are ten idle
and the U.S. Department of Energy, Grant No. DE-FGO034terations without a successful downhill update for that par-
01ER45908. Computational support was provided by thdicular particle. Note that this particle replacement update is
USC Center for High Performance Computing and Commudifferent from random step updates because it is independent
nications and by the NERSCC. of the previous position of the particle, and thus it is particu-
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conditions. The target density of states is chosen to be the
symmetric top-hat function, with poles evenly spaced be-
tween E=—4t and 4. All of these benchmark runs are
started with atoms placed randomly along a chain. The com-
puter is a Pentium Il 1 GHz with 2GB pc133 memory, and
the additional seven nodes used by the genetic algorithm
method are Pentium Ill 850 MHz processors with 1 GB
....... Downhill memory. Each method is run for 600 s.
e Simillated Annealing As shown in Fig. 10, all methods, with the exception of
Triggered Annealing . " . ce .
éire ParticleReglacement the genetic algorithm, converge rapidly within the first
Genetic Algorithm minute of run time, and show only relatively small correc-
tions afterwards. The two techniques with the fastest conver-
gence(inset of Fig. 10 are the downhill and the simulated
annealing methods. However, their asymptotic error func-
6 e e A Wi ——— I tions remain relatively large, indicating that they get easily
) 120 240 360 480 600 stuck in local minima. In general, simulated annealing is
Time (s) expected to give better convergence than the simple downbhill
method. On longer time scales than shown in Fig. 10 this is

FIG. 10. Comparison of the convergence of several optimizatiorindeed the case. The reason for the rather poor convergence
algorithms. The erroA is shown as a function of computer run jthin the first 10 min shown in this figure is that simulated
time. The inset uses a logarithmic scale for annealing pushes atoms to explore metastable, frustrated

configurations. However, for the one-dimensional case that
larly powerful in avoiding physical blocking of updates in was used for this benchmarking it is particularly difficult for
lower dimensional systems. this method to find its way out of such metastable states. In

In genetic algorithms a population of possible solutions ishigher dimensiongless amenable to benchmarkjrigere is
created. Those that best minimize the function are allowed too such problem.
take part in creating a new generation of possible solutions. In contrast, the triggered annealing and particle replace-
These methods are generally good at avoiding local minimanent methods yield much better matches to the target func-
and are also easily implemented on parallel computers. Thetyon, while still converging relatively fast. As shown in the
typically require more function calls than other search algoinset, the annealing methods sometimes accept trial steps in
rithms. the “wrong” direction in order to avoid local minima. Fi-

In order to illustrate the efficiency of these various ap-nally, the genetic algorithm takes a relatively long time to
proaches each method is used to match a flat top-hat targebnverge. However, it yields by far the best match to the
function on a one-dimensional lattice with 24 tight-binding target density of states after about 7 min run time. In order to
atoms and a box size of 96. Particles exiting the box fromensure best matches to the target, this last method is there-
one end enter it from the other side via periodic boundaryfore used whenever the computational effort allows it.
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