
 1

Two-Stage Decomposition of SNORT Rules 
towards Efficient Hardware Implementation 

Hao Chen, Douglas H. Summerville, Yu Chen* 
Dept. of Electrical and Computer Engineering, SUNY – Binghamton, Binghamton, NY 13902 

 
Abstract∗– The performance gap between the execution speed of 
security software and the amount of data to be processed is ever 
widening. A common solution is to close the performance gap 
through hardware implementation of security functions. 
However, continuously expanding signature databases have 
become a major impediment to achieving scalable hardware 
based pattern matching. Additionally, evolutionary rule 
databases have necessitated real time online updating for 
reconfigurable hardware implementations. Based on the 
observation that signature patterns are constructed from 
combinations of a limited number of primary patterns, we 
propose to decompose the Snort signature patterns. These 
smaller primary pattern sets can be stored along with their 
associations to allow dynamic signature pattern reconstruction. 
Not only does the matching operation potentially become more 
scalable, but the real time online updating task is simplified. The 
approach is verified with patterns from the latest version of the 
Snort rule database. The experimental results show that after 
decomposition, a reduction in size of over 77% can be achieved 
on Snort signature patterns. 
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1. Introduction 
In the past decades, the performance gap between the 

processing requirements of Network Intrusion Detection 
Systems (NIDS) and their software-based implementations 
has been widened due to the escalation of sophisticated attack 
tools and the performance limitations of sequential execution. 
A common solution is to close the performance gap through 
hardware implementation of security functions. The major 
motivation is to pursue more powerful computing capability 
for the execution of more sophisticated security functions in 
real time. In addition, by exploring unique features of 
hardware execution style, such as multi-threaded parallelism 
and multi-stage pipeline, further improvements could be 
achieved.  

Packet inspection is one of the important fundamental 
tasks performed by NIDS. It consists of two parts, packet 
classification that focuses on the packet header and deep 
packet inspection that examines the payload. Research efforts 
have focused more on the later, since performing deep packet 
inspection is more difficult due to the diverse formats of 
packet payloads. 

Pattern matching or signature detection is a fundamental 
technique for deep packet inspection. By comparing input 
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data with predefined signature patterns, malicious content can 
be accurately identified. Actually, more than 80% of the Snort 
rules contain signature patterns and more than 80% of CPU 
time is taken by pattern match operations [12].  

Snort [17] is a well-known software based security 
application originally designed for lightweight network 
intrusion detection. Unlike commercial NIDS, in which core 
parts are hidden for intellectual property protection, Snort is a 
free open-source NIDS. Its rule database is used to generate 
regular expressions for intrusion detection. Users are allowed 
to strengthen the rule database as well as other parts of Snort, 
and verified rules are collected for the update of its core rule 
database. Over a ten-year evaluation time, the Snort rule 
database has earned a good reputation due to its accuracy, 
comprehensiveness and efficiency.  

With the trend of using hardware based applications for 
security protection in high speed network environments, 
continuously growing rule databases have become a 
significant impediment to hardware implementation. 
Nowadays, hardware solutions are likely to be integrated on a 
single chip with tight resource constraints. Along with many 
advantages, the consequent side-effect is that hardware 
implementations are more resource-sensitive. Without 
deliberate design methodologies, hardware resources can be 
quickly exhausted.  

At the same time, it is highly desirable that a NIDS can 
update its rule database in real time, so that newly emerging 
attacks can be handled promptly. However, this issue is still 
an open problem, since hardware design is not as flexible as 
software programming. Modification in reconfigurable 
hardware implies replacement and rerouting of circuits. In 
addition, many realistic conditions that are seldom considered 
in software implementations must be taken into account in a 
hardware implementation, such as signal delay, fan-in/fan-out 
and power consumption. 

Therefore, it would be ideal if a NIDS could be 
implemented in a lightweight manner, so that the signature 
database neither occupies huge memory space nor increases 
infinitely. Furthermore, the update operation should be done 
in real time and online, which implies that adding new 
signatures should not lead to significant replacement and 
rerouting efforts.  

NIDS signatures can vary from being as simple as 
checking the value of a header field to as complex as 
calculating the statistical characteristics of a connection or 
conducting sophisticated protocol analysis. Essentially 
signatures represent the activities an intruder has to perform 
to gain access into a computer system. These activities can 
include such things as launching programs, running scripts, 
querying databases and following the steps of a protocol. 
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Activities such as these can be broken down into a set of 
operations, and signatures describe sequences of these 
operations.  

Since intruders must interface through computer, their 
operation sequences should be input sequences that computer 
can accept. In practice, basic input sequences are limited, 
defining a finite set of allowable activities. Any sophisticated 
input sequence could be disassembled to basic sequences. If 
an input sequence could be mapped to a signature, a basic 
sequence could be mapped to a primary pattern. Hence, no 
matter how large the signature database grows, the number of 
primary patterns which represent fundamental operations is 
limited.  

This observation implies that the total number of primary 
patterns is limited if each primary pattern corresponds to an 
operation. If we can represent the signatures as permutations 
of these primary patterns, the memory or hardware resources 
required to characterize the primary patterns appearing in the 
signature database can be significantly reduced. 

By analyzing signature pattern sets extracted from a 
Snort database, we verified this rationale as we observed that 
many primary patterns appear repeatedly within signatures. 
Even when new signatures are added, many of them can be 
decomposed into the existing set of primary patterns, with 
infrequent additions. Practically, this implies that a smaller 
amount of memory or other hardware resources could be 
required to implement these primary patterns.  

Since all patterns are distilled from network traffic 
carrying data for common protocols and services, it is 
reasonable to believe that this observation is not only 
applicable to the pattern set abstracted from the Snort rule 
database that we studied, but also applicable to pattern sets 
from other pattern match based Network Intrusion Detection 
Systems (NIDSs) as well. Though the appearance of signature 
pattern sets may be different due to diverse environments, the 
primary pattern sets should be similar. 

The remainder of this paper is organized as follows: 
Section 2 briefly introduces reported work that is closely 
related to our effort. Section 3 illustrates our observation and 
presents a two step approach to decompose the Snort 
signature/rule database. Section 4 verifies our observation 
through detailed analysis. Section 5 discusses some basic 
principles of our current ongoing work based on the 
decomposed Snort signatures. Section 6 summarizes this 
paper. 

2. Related Work 
To the best of our knowledge, it was Franklin et al. who 

first attempted implementing patterns from the Snort rule 
database on top of reconfigurable hardware [9]. Since the 
primary focus was on hardware adaptation, many other 
important issues were deliberately not considered in this 
design. From the perspective of pattern matching 
implementation, their rationale was that hardware circuits can 
be precompiled and the compiling time is not a big issue since 
patterns are predefined. However, considering today’s rapidly 
evolving network security requirements, this rationale is no 

longer feasible. Currently, signature pattern updating is 
crucial to maintaining the reliance of any signature-detection 
based NIDS. As to reconfigurable hardware applications, 
recompilation is one of the integrated procedures of update, so 
it greatly affects the efficiency of these applications. Time is 
very limited for recompilation in the case of high performance 
detection. Although they mentioned the scalability issues of 
patterns due to the growing size of Snort rule database, they 
did not propose any meaningful solutions. 

Up to now, design innovations based on a variety of 
techniques have been applied to hardware-based pattern 
matching approaches. However, they have generally suffered 
from limited hardware resources, especially the tight budget 
of memory resources to store patterns or perform pattern 
comparison. 

Cho et al. [6] proposed to relieve the scalability issue of 
pattern comparison and to improve the performance by using 
8-to-1 decoders for each byte comparator and instantiating 
one decoder output for all the same output. The 8-to-1 
decoder was setting the character decoder to the first stage of 
the pipeline. Before conducting a comparison, input data at 
the character level is decoded to a single bit level; all 
comparisons are then performed based on these single bits. By 
this means, they reduced the overall size of the comparators to 
one-eighth. In circuit design, reducing the number of fan-in 
also reduces the side effect to gate. Secondly, all the 
comparators use the same data input and many decoders are 
exactly the same. Instantiating one for sharing saves hardware 
resources. To achieve more efficient operation, patterns are 
divided into prefix and suffix part, and the prefix part was 
used to index major portion of patterns contained in suffix 
part. While the prefix part was kept on chip, the suffix part 
was kept on off-chip ROM. It was obvious that the size of 
on-chip RAM and the bandwidth in-between memories 
greatly impact the system performance. 

There are reported efforts that focus on the 
implementation of regular expression pattern matching engine 
[4], [14]. Specifically, by using Nondeterministic Finite 
Automata (NFA), instead of centralizing on character decoder, 
they employed the SRL 16 module [7], and they also explored 
certain common prefix sharing techniques. Good 
experimental results were achieved, containing 500 IDS 
regular expressions from Snort in 25K logic cells. However, 
the scalability issue would be prominent with larger numbers 
of expressions being implemented.  

Aldwairi et al. developed a configurable string matching 
accelerator to speed up the deep packet inspection [1]. They 
executed software on a general purpose processor for Finite 
State Machine (FSM) operation with the support of standard 
RAM. The software generates a FSM from patterns extracted 
from the Snort rule database, and the FSM is in charge of 
pattern matching operation. However, both the generation and 
operation of the FSM for pattern matching would become 
more complicated as the number of patterns increases. In 
addition, although they tried to increase throughput by 
increasing on-chip RAM bandwidth, there is a limit to how 
much bandwidth can be increased. 
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Instead of completely focusing on pattern comparison for 
performance improvement, researchers have also proposed to 
improve performance by taking advantage of some properties 
in network traffic [13], [2]. They indicated that malicious 
packets make up only a small share of total traffic. 
Consequently, they adopted hybrid architectures in which 
hardware devices handle pre-filtering and PC-based software 
implements Snort for final identification. It was reported that 
more than 90% of the workload of traffic processing could be 
relieved from Snort software through this approach. In 
addition, this design could sustain more than 10Gbps 
throughput compared to 1Gbps Snort throughput. Compared 
with the other approaches, this approach is more flexible and 
has good scalability. However, the problem of maintaining 
1Gbps throughput of software-based Snort is not trivial. 

Another approach [3] that is close to our effort attracts 
our attention due to its good performance on both feasibility 
and scalability achieved by partitioning Snort patterns. While 
many hardware-based pattern matching applications focus 
more on hardware innovation, their investigation focused 
more deeply into the original pattern sets. The graph-based 
“min-cut” technique [10] was applied to help achieve optimal 
design. The basic idea of min-cut partition is that the number 
of edges between nodes within the group is maximized, and 
the number of edges between different groups is minimized. 
After partitioning, optimized pattern structures are 
implemented in hardware for pattern matching operation. In 
fact, this is the only work we know of that focuses on the 
analysis of relationships concealed in Snort patterns to 
improve the performance of the corresponding hardware 
processing and to solve scalability issues.  

3. Decomposition of SNORT Patterns 
Most efforts to improve the performance of 

hardware-based pattern matching implementations have 
focused on the innovation of hardware architectures or 
matching algorithms. However, the original source of the 
complexity and scalability problems are the characteristics of 
the signature pattern set. Therefore, it is more effective to gain 
a deeper insight into these characteristics before investigating 
hardware architectures. 

Our study has revealed that the most significant factor 
causing Snort signature pattern set inflation is the existence of 
internal redundancies. If these concealed redundancies can be 
successfully reduced the size of signature pattern set can be 
well controlled, so as to relieve the complexity and scalability 
issues of subsequent implementations. This section introduces 
a two-step signature pattern decomposition method developed 
for this purpose. 

3.1 Redundancies in SNORT Patterns Sets 
The signature patterns used in this work are extracted 

from the Snort rule database. In addition to these patterns, 
other packet information is also contained in the database for 
detection and administrative support such as source/ 
destination addresses, source/destination ports, protocols, 
flags and tags. In general, a complete Snort rule consists of 

two logic sections, the rule header and the rule options [17]. 
Figure 1 shows a Snort signature selected from its 

database. The text up to the first parenthesis is the rule header 
portion, which includes basic packet header information with 
specific IP addresses replaced by wildcards. The second 
portion within the parentheses is the rule options, which 
includes alert messages, pre-identified signature patterns, and 
other support information for Snort NIDS. 

 
Figure 1. An example of a Snort rule. 

Within the rule, the data string being quoted after the 
“content” is the signature pattern that is sought. “Content” 
works as a keyword in the Snort rules database, introducing 
the specific signature patterns for deep packet inspection [17]. 
An example of such a signature pattern is shown in Figure 2. 
In this case, the pattern is composed of both text characters 
and binary data. The binary data is represented in hex format 
and enclosed within pipe characters (|).  

 
Figure 2. A Sample of Snort signature pattern 

For convenience, we take a group of signature patterns 
extracted from the Snort rule database as an example to study 
its properties. We call such a group of signature patterns a 
signature pattern set. There are two important properties that 
exist in a signature pattern set: repetition and composition.  

1. Repetition: as shown in Figure 3, signature patterns 
contained in 3 rules out of total 6 are the same. This 
redundancy implies that increasing the number of 
signatures may not necessarily lead to a 
commensurate increase in the number of primary 
patterns. 

2. Composition: as shown in Figure 4, each signature 
can be considered as a combination of smaller pattern 
fragments, or primary patterns. Thus, a signature 
pattern can be decomposed into one or more primary 
patterns. 

Essentially, the existence of both repetition and 
composition imply that redundancies exist in the pattern set. 
Instead of passing these redundancies to corresponding 
hardware operations or applying more sophisticated 
mechanisms for redundancy mitigation at the hardware design 
level, as many current approaches do, it is more effective to 
remove these redundancies up front at the time when the 
pattern set is generated. 

Once we carefully peel off these redundancies, not only is 
the complexity of the corresponding hardware design reduced, 
but also the scalability of the system is improved. Then, we 
can maintain the same functionality as the original design 
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with fewer patterns implemented in real circuits. Obviously, 
this approach relieves the conflict between the growing 
signature databases and limited hardware storage resources. 

3.2 Pattern Decomposition 
Based on the above observations, we decompose the 

abstracted pattern set further to remove redundancies. The 
decomposition consists of two steps corresponding to the 
properties of repetition and composition. The first step, 
dealing with repetition in the pattern set, is straightforward. It 
checks all individual signature patterns inside the pattern set 
in turn and simply removes repeated patterns. The second step, 
handling composition, involves further decomposing 
signature patterns into primary patterns. A primary pattern is a 
substring of a signature pattern. This step is more difficult 
since there are many ways one can parse and decompose 
individual signature patterns into primary patterns. 

The most challenging issue in the second step of deep 
decomposition is balancing the tradeoffs between system 
performance and redundancy. Signature patterns can be 
decomposed into primary patterns of various lengths, ranging 
from single characters up to entire signature patterns. It is 
naïve and inefficient to decompose the signature patterns 
down to the character level. Although the total number of 
characters used, and hence the number of primary patterns, 
will never exceed the number of ASCII codes (256, with even 
fewer used in practice [3]), such fine-grained decomposition 
leads to tremendous overhead in system performance while 
performing dynamic pattern matching since it is extremely 
inefficient to reconstruct signature patterns from individual 
characters. 

We conduct pattern decomposition on text-based patterns 
at the “word” level, which takes advantage of text-based 
redundancies exhibited in signature sets, such as those shown 
in Fig. 4. Although pattern decomposition could also be 
performed on binary data patterns, such as those shown in Fig. 
3, methods of delineating primary patterns are not as 
immediately obvious. Since our primary goal is to verify the 
correctness and feasibility of the proposed approach, this 
preliminary analysis of decomposition biased on text 
dominant patterns is enough. 

For decomposition, we have chosen the following 
heuristic. A string of adjacent characters not containing any 
“hyphen symbol” between any two characters is considered as 
a primary pattern, as are the hyphen symbols by themselves. 
Taking the signature patterns in Fig. 4 for example, “dbms”, 
“repcat”, “alter”, and “priority” are all considered as primary 
patterns and “_” and “.” are considered as “hyphen symbols”. 
In general, any symbol in between two character strings could 
be considered as “hyphen symbol”; we have chosen 
underscore (‘_’), hyphen (‘-‘), period (‘.’) and space (‘ ‘) and 
forward slash (‘/’) characters to be hyphen symbols. 
Specifically, in cases when patterns form combinations of 
both text characters and binary data, any binary data string in 
between pairs of “|” is considered as an individual primary 
pattern. Considering the patterns in Fig. 3 for example, “|5C|”, 
“PIPE”, “|5C 00 05 00 0B|” are all considered as primary 
patterns. It worth noting that “|” itself is not a part of patterns 
in practice. Instead, it is used only as a mark to distinguish 
between text characters and binary data. 

Figure 5 shows the change in the number of pattern 
entities resulting from the two-step signature pattern 
decomposition method for various categories of Snort rules, 
while Fig. 6 shows the change in total storage size. The 
signature patterns  are taken from Snort V.2.3.3 and are 
divided into 48 categories. To maintain a clear view, pattern 
categories that contain less than 50 entities are excluded from 
Fig. 5 and those that contain less than 500 characters total are 
excluded from Fig. 6. The complete figures are included in 
our technical report [18]. Within each category, the graphs 
show the original number of signature entities values (before 

 
Figure 3 Repetition of patterns 

 
Figure 4 Composition of primary patterns 
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two-step processing), the number after redundancy removal 
and the number of primary patterns after subsequent deep 
decomposition. To highlight the change within each category, 
rather than the variations among them, all values have been 
normalized to the original count (Fig. 5) or size (Fig. 6) of the 
pattern signatures in the category. Though not evident due to 
the normalization, there is a wide variation in the number of 
signature patterns and the total size of the individual 
categories. The rightmost category in each figure provides the 
normalized result for all categories combined.  

For nearly every signature pattern category in Fig. 5, 
there is a significant reduction in the number of signature 
patterns after redundancy removal, which suggest a high rate 
of reuse of entire signature pattern entities. One of the 
extreme cases in Fig. 5 is the netbios rule category, for which 
the original number of signature entities (20,087) is reduced 
to 148 after repetition removal. The Oracle and web-client 
rule sets have the lowest redundancy of the pattern categories. 
The cumulative results for the entire data set show that there 
are a total of 25,802 signature pattern entities in the database, 
only 4076 are unique. However, the number decreases to 164 
entities and 1355 bytes after deep pattern decomposition, 
respectively. In Fig. 6 one observes a decrease in size due to 
repetition removal that is based on the amount of reuse and 
size of the patterns. The aggregate reduction in size for all 
pattern categories is from 145,348 bytes down to 72,315 bytes, 
a reduction of just over 50%. 

After subsequent deep decomposition, the pattern entity 
count represents the number of unique primary patterns 
present; thus, one would expect the count to increase since 
each pattern is broken down into substrings and, since each 
pattern is itself unique, one would expect each to contribute 
something new to the total. In the case of the oracle and 
web-cgi categories, there is a decrease in the number of 
pattern entities. This suggests the signature patterns are 
formed from permutations of a smaller set of primary patterns. 
Even more important than entity count is the size of the 
resulting primary pattern set (32,898 bytes), which represents 
a further decrease of 55% after repetition removal, resulting in 

a total decrease of over 77% for the two step processing 
method. Normalized pattern sizes 

4. Further Analysis and Verification 
The fundamental motivation of deep decomposition is 

that signature patterns are correlated to activities that an 
intruder must to perform in order to gain access to a computer 
system. An activity may consist of multiple atomic operations 
that are mapped to certain primary patterns contained in a 
signature pattern. Depending on the service being attacked, 
the activities of an intruder may exhibit a wide range of 
diverse data formats and/or functionalities; yet for each 
service, the atomic operations should be limited in practice to 
the set of operations (inputs) that are recognized by the 
computer software implementing the service. This set is 
further limited by the activities that will benefit the attacker. 
Since the number of services running on a practical machine 
is expected to be finite, the total number of primary patterns 
should not exceed a finite upper bound. After reaching some 
practical size, the number of primary patterns is unlikely to 
increase significantly with incremental increases in the 
number of signature patterns in the database.  

Assuming that it is feasible to reconstruct signature 
patterns from a limited number of primary patterns, the end 
result should be smaller, more efficient hardware 
implementations. We consider issues related to recomposing 
signature patterns in section 4.1. To verify the premise that the 
number of primary patterns is bounded in practice and that 
this bound is not based on signature database size, we analyze 
the incremental growth in primary patterns in section 4.2.  

4.1 Signature Pattern Reconstruction 
To benefit from the reduced size of the primary pattern 

set, it is critical to find an efficient approach to express and 
reconstruct the original signature patterns from primary 
patterns. Such an approach can overcome the conflict between 
the growing size of signature databases and limited hardware 
resources, since newly added signature patterns can be 
decomposed to and reconstructed from existing primary 
patterns. In another words, the implementation achieves 
scalability with respect to the number of signature patterns.  

Compared to approaches that require more memory space 
to store new patterns [9], [4], [14], [1], our novel approach 
has the potential to achieve much better scalability. Compared 
to approaches that require complex hash functions for pattern 
condensing [8], [15], our approach is much simpler and more 
feasible for on-board application.  

The problem of efficiently reconstructing signature 
patterns based on primary patterns resulting from our two-step 
decomposition procedure is an area of further research. 
Considering each primary pattern as a single graph node, 
reconstructing a signature pattern is simply a process of 
forming a directed graph for each signature. As illustrated in 
Fig. 7, “dbms”, “repcat”, “alter”, “site” and “priority” are five 
primary patterns obtained from examples of Fig. 4.  

Figure 7 also illustrates the pattern reconstruction phase, 

 0

 0.2

 0.4

 0.6

 0.8

 1

chat

exploit
m

isc

netbios
oracle
policy

rpc

shellcode
sm

tp

spyw
are-put

sql

w
eb-cgi

w
eb-client

w
eb-iis

w
eb-m

isc
w

eb-php
Total

N
or

m
al

iz
ed

 p
at

te
rn

 s
iz

e

Category of Patterns

Original Signature Pattern Set Size(Bytes)
Signature Pattern Set Size after Repetition Removal(Bytes)
Primary Pattern Set Size after Deep Decomposition(Bytes)

Figure 6. Variation of pattern sizes  



 6

in which these primary patterns could be used to recover 
original signature patterns. Figure 7(a-c) shows how original 
signature patterns are reconstructed, while Fig. 7(d) shows 
how a new signature pattern can be reconstructed from the 
same set of primary patterns. This is the essential feature that 
we are pursuing: increasing the variation of edges between 
nodes rather than increasing the number of nodes, allowing 
different signature patterns to be easily reconstructed. 
Efficient methods for implementing this reconstruction in 
hardware are an area of further study.  

4.2 Statistical Verification  
In order to verify our premise that the number of primary 

patterns increases at a much slower rate compared to the rapid 
growth of signature pattern databases, we extended our 
analysis of pattern decomposition to determine the variations 
across multiple versions of the Snort rule database. Since 
these versions represent the evolution of the Snort database 
over a period of several years, this experiment presents us a 
clear view on the relationship between growth in the number 
of signature patterns and growth in primary patterns. 

We have analyzed the series of signature pattern sets 
currently available, representing seven major public versions 
of Snort rule databases. They include V2.1 to V2.4 and V2.6 
to V2.8, which were released over a period from April 2005 to 
October 2008. Although new types of rules were added to rule 
databases to accommodate the continuous evolution of 
network intrusion patterns, major parts of Snort rule databases 
still follow an accumulating update policy. From V2.1 to V2.2, 
V2.3 to V2.4 and V2.6 to V2.8, the corresponding types of 
Snort rules were increased from 48 to 50, and later to 52. 
However, the sizes of rule database inflated from 935Kb to 
8.86Mb.  

The number of pattern entities and the size of pattern sets 
are two key parameters that we are interested in. With these, 

we are better able to determine the growth relationship 
between signature patters and primary patterns. By extracting 
the “content” signature pattern rules from the databases, we 
obtain the original signature pattern sets, summarized in Table 
1. The size of the signature patterns grows from 31.1kB in 
version 2.1 to 164.2kB in version 2.8. We then further 
decomposed each set of original signature patterns down to 
primary pattern sets following the two-step decomposition 
procedure presented in Section 3. 

Table 1. Summary of parameters of signature pattern set and 
primary pattern set in different versions 

Signature Pattern Set Primary Pattern Set 
Version 

Entities Size Entities Size 
2.1 2,739 31.1 kB 2,432 11.7 KB 
2.2 3,442 33.0 kB 2,501 11.7 KB 
2.3 25,802 145.3 kB 5,856 32.9 KB 
2.4 26,936 147.9 kB 5,867 32.9 KB 
2.6 31,103 164.1 kB 6,482 37.0 KB 
2.7 31,097 163.9 kB 6,525 36.9 KB 
2.8 31,156 164.2 kB 6,523 37.0 KB 

The plot in Figure 8 illustrates the incremental increase in 
the size of the decomposed database as the number of 
signature pattern entities increases. From the most recent set 
of rules tested (version 2.8), the netbios content signature rule 
set was selected, since it is the largest set of rules.  

Because the rules do not contain a timestamp indicating 
when they were added to the database, the rules were 
randomized to minimize the effect of grouping within the file. 
To generate the plot, one additional rule was added to the 
database at each step, and the size of the database after 
two-step decomposition was recorded. Thus, the graph shows 
the incremental growth in the primary pattern set size as the 
signature set size increases.  

Clearly, as the number of signatures increases the growth 
of the primary pattern set size appears to be decreasing rapidly. 
The individual points on the plot show where the netbios 
(signature pattern set size, primary pattern set size) pairs fall 
on this plot.  

Note that except for version 2.8, the points do not exactly 
fall on this curve since the rules were incrementally added in 
random order and some rules may differ between versions.  
However, the points do show good agreement, justifying the 
sampling procedure used to generate the plot. 

While Figure 8 supports our premise that after reaching 
some practical size, the number of primary patterns saturates 
and is unlikely to increase significantly with incremental 
increases in the number of signature patterns in the database, 
we cannot say for certainty that this is indeed the case. Many 
of the signature pattern sets in the snort database are too small 
to have reached the point of saturation and the database as a 
whole, being composed of many types of traffic, also have not 
yet reached the point of saturation.  

Despite this, the signature pattern sets all exhibited 
sub-linear incremental growth when analyzed. Furthermore, 

Figure 7. Signature Pattern Reconstruction 
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even if the database never reaches the saturation point given 
changes in service types, the overall reduction in size 
achieved by our two-step decomposition procedure still 
justifies the use of static signature pattern decomposition and 
dynamic reconstruction.  

5. Discussion 
The main advantage of adopting the proposed 

decomposition and reconstruction based pattern processing 
technology is able to achieve a good scalability. As we have 
successfully demonstrated a scalable way to reduce the 
redundancy in signature pattern sets, the natural extension is 
to investigate scalable approaches for real-time dynamic 
updating and high-speed online signature matching. However, 
as this is ongoing work, only some basic principles are 
discussed in this section. 

5.1 Scalable Pattern Update 
Static update refers to the update mode that is 

pre-scheduled. Due to its easy operation, static update is the 
most conventional and popular mode used for the update of 
signature patterns. However, static update is not conducive to 
dynamic update requirements. Although manual operations 
could provide certain flexibility, their impact is limited. Hence, 
the efficiency of static update is questionable due the 
increasing possibility of inaccurate results. Increasing the 
frequency of update is not an ideal solution. If the update is 
conducted too often, it causes unnecessary overhead to the 
system since there is not new pattern to be added. In contrast, 
it may be still not fast enough to handle a burst of signature 
update. A more flexible and intelligent update scheme is 
expected to overcome these drawbacks. Consequently, events 
driven dynamic update is desired.  

As illustrated in previous sections, we have relieved the 
pressure on storage space requirements by decomposing the 
signature into primary patterns. When a new signature has 
been caught, the update operation is correspondingly 
decomposed into two sub-tasks: i) adding new entry into the 

primary pattern set if new primary pattern appears; and ii) 
storing the relationships among primary patterns into the 
relation database. Since new signature patterns do not 
necessarily lead to the increase of primary patterns, 
particularly when the set of primary patterns become “large”. 
A new signature more likely implies a new relation among 
existing primary patterns.  

Unfortunately, it is non-trivial to describe the complex 
association relations concisely and completely. We are 
considering simplify the associated relations through graph 
clustering algorithms, which cluster nodes according to 
specific sharing features [11]. Hierarchical Dirichlet Process 
with Hidden Markov State [16] is a possible solution for 
further processing of these relations. 

It is also a critical mission to develop a non-disruptive 
updating strategy, since the normal operation of an intrusion 
detection system should not be interrupted for signature 
updating. A delayed write strategy could be an option. While a 
new primary pattern is detected, the system only updates the 
record of the bloom filter [5]. The pattern will be stored 
temporarily in a buffer, and written into the database later 
when the system is not so busy.  

5.2 Dynamic Signature Matching 
One advantage of our dynamic matching scheme is that 

we do not need to conduct the “matching” operation bit-by-bit 
as the current technologies. Once the incoming pattern has 
been decomposed, the existence of the primary patterns is 
detected through the Bloom Filters in parallel. Indexing by the 
Bloom Filters, a set of “links” will be identified, which is 
corresponding to association relationships among those 
primary patterns. 

Treating the Snort signature database as a complex graph, 
we can re-model the problem as a path-finding problem. A 
signature matching is finding an existing directional path 
going through numbers of nodes in the graph.  

Based on the above principle, we are designing a 
two-phase fast parallel dynamic signature matching scheme 
that takes advantage of the decomposition operation. Similar 
to the dynamic scalable pattern update operation, first phase 
will decompose the investigating patterns into primary 
patterns. Then the Bloom Filters [5] checks whether these 
patterns match the signature primaries in the Snort signature 
sets. If the result indicates there are multiple attack/intrusion 
primary patterns, we will try to walk though those nodes in 
the graph to detect the existence of a path.  

6. Conclusion 

In this paper, we proposed a novel two-step pattern 
decomposition scheme to remove hidden redundancies in the 
Snort signature database. Signature patterns are decomposed 
into primary patterns that can be stored along with their 
association relationships. Our approach has been validated 
through detailed analysis of multiple versions of the Snort 
signature database. In particular, our results suggest that 
increases in the number of signature patterns do not 
necessarily lead to commensurate increases in the number of 
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primary patterns. This technique relieves the resource 
demands on hardware implementations. In addition, it is 
promising towards a self-adaptive network infrastructure.  

Currently we are extending our work to a real hardware 
application – a scalable dynamic pattern update and pattern 
matching for real time distributed intrusion detection 
application. Section 5 has presented the rationale of our 
ongoing efforts. One of the major challenges is how to handle 
the complex association relationship in a concise but accurate 
manner. Successful solution of this problem would not only 
benefit signature pattern based network intrusion detection, it 
will also benefit general complex pattern matching/updating 
applications. 
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