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Abstract—Wearable body sensors have been widely used to
monitor the health status of seniors or patients who live alone.
Alarms are sent to e-Health providers when dangerous symp-
toms are detected. However, high false alarm rate significantly
limits the effectiveness of medical monitoring. Telemedicine
Mobile Cloud (TMC), leveraging recent advances in sensing,
networking, and computing technologies, is an effective and
promising solution. In this paper, a TMC based strategy has
been proposed, which identifies needles (real dangers) among
the haystacks (alarms) by taking advantage of the real-time,
on-site monitoring capability of Android mobile device and
the abundant computing power of the cloud. Extensive experi-
mental study has verified that the TMC-enhanced strategy has
effectively reduced the false alarm rate.
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I. INTRODUCTION

According to the World Health Organization (WHO) [14],
the United States spends about 16% of its gross domestic
product (GDP) on healthcare, the highest level in the world
and twice the world average, far higher than the percent-
age for other developed countries (8.9% on average). The
Department of Health and Human Services estimates that
the figure will be 19.5% by 2017 [12]. Nevertheless, the
use of health care services in the U.S. is far below that
of comparable countries, reflecting greater inefficiency and
higher prices for health care services in the United States.
The skyrocketing health expenditures and the gradually
aging population have been the two of the top concerns to
the whole society.

Telemedicine, leveraging recent advances in sensing, net-
working, and computing technologies, has proven to be an
effective and promising solution. A critical and costly part of
healthcare systems is the monitoring of patients’ vital signs
and other physiological signals, which play significant roles
in physicians’ diagnostic processes. The highly specialized
and extremely expensive medical monitoring equipment
found in hospitals is neither easily accessible nor affordable
for next-generation patient-centered, pervasive healthcare.

Fast growing mobile technologies have enabled and pro-
moted the use of mobile-based health monitoring and alert
systems (usually referred as “mHealth”), aiming at providing
real-time feedback about an individuals health condition to
either the user or to a medical center, while alerting in case
of possibly imminent health-threatening conditions. Mobile

phones have become ubiquitous in people’s daily lives. Re-
cently, many mobile-based medical monitoring devices have
been developed with the capability of processing certain
types of physiological signals [8], [10].

However, the limited computational power and battery life
of existing mobile devices, significantly limit their ability to
execute computing-intensive tasks. Due to these constraints,
many mHealth systems are built on top of naive threshold
based alert generation algorithms. Consequently, the false
alarm rate is very high. Several studies have reported the
extremely high rate of false alarms (i.e., up to 90% of all
alarms) in clinical settings [6]. Frequent false alarms are
distracting and interfere with physician’s ability to perform
critical tasks effectively in practice, so that it may not be
uncommon for nurses to simply turn off the monitor since
they have been overwhelmed by those false alarms.

Cloud computing is a new computing paradigm that has
gained interests from both industry and academia. Compared
to the traditional distributed computing, cloud computing
possesses a lot of favorable features, such as transparent
service, good scalability and elasticity, supporting the pay-
as-you-go service model, and omni-accessibility [9]. This
paradigm not only enables users to enjoy the convenient,
versatile, efficient services, but also relieves the burden
required for maintenance. Government branches and private
business sectors have recognized that cloud computing will
promote telemedicine revolutionarily.

Integrating smart mobile devices and cloud computing
platform, the Telemedicine Mobile Cloud (TMC) is a
promising approach towards pervasive, affordable, versatile
medical and health services of our future [13]. In this paper,
we investigate the feasibility of reducing the high false
alarm rate by outsourcing data intensive and computing
intensive tasks in telemedicine to powerful cloud servers.
A proof-of-concept TMC prototype has been developed and
the experimental results are very encouraging since the false
alarm rate has been reduced significantly.

The rest of the paper is structured as follows. Section II
provides a brief introduction to the work related to cloud-
enhanced telemedicine. Section III introduces our TMC ar-
chitecture and algorithms to identify true medical conditions
from a huge amount of alarms. The experimental results and
performance evaluation are reported in Section IV. Finally,
we wrap up this paper in Section V with conclusions.
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Figure 1. Telemedicine based on Mobile Cloud Medical Monitoring.

II. BACKGROUND AND RELATED WORK

Telemedicine represents the delivery of healthcare over
long distances, by using information and communication
technologies (ICTs) for the exchange of valid information
for diagnosis, treatment and prevention of disease and
injuries, and for the continuing education of healthcare
providers [15]. Recent advances of wireless mobile tech-
nologies have created a tremendous amount of momentum
toward increasing access to health care via telemedicine.

The use of portable/wearable physiological monitoring
systems will enable physicians (and patients) to closely
monitor patients’ health status and effectively prevent major
medical conditions without the costly and time-consuming
hospital visits. Medical monitoring data can be routed to
the physician for detailed evaluation or to a computer-aided
diagnostic program to automatically identify any abnormali-
ties in physiological measurements and provide the alerts or
warnings to caregivers for timely response [1]. This type of
telemonitoring is particularly effective for managing chronic
conditions for elderly adults such as diabetes, hypertension,
and cardiovascular diseases, and has been shown to reduce
hospitalization and mortality rates [11].

As shown in Figure 1, mobile devices can be used to
acquire various physiological signals from a set of ambi-
ent/body sensors. To alleviate intensive computations and
extend the battery life of mobile devices, the acquired
physiological signals will be transferred to a cloud service
environment to perform desired, computation-intensive algo-
rithmic signal processing. The processed results, recognized
abnormalities, or diagnostic alarms will be automatically
archived in the cloud or sent to the mobile devices owned by
patients, physicians, or emergency teams. This application
mode can be of particular significance to patients whose
physiological signals need to be monitored continuously.

For instance, Hsieh and Hsu [5] presented a telemedicine
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Figure 2. Software Architecture.

cloud service enabling ubiquitous delivery of inter-hospital
ECG records. Shen et al. [3] proposed a cloud-based EEG
signal analysis system to detect brain disorder, where the
computation-intensive functions of feature extraction, fea-
ture selection, and support vector machine (SVM) classifier
are implemented and deployed using cloud services.

In this paper, we seeks to explore an optimal application
model that synergistically leverages the mobile cloud for
telemedicine. Instead of focusing on certain specific disease
monitoring or signal analysis algorithm, cloud has been uti-
lized to identify real abnormalities among a huge amount of
alerts. This paper also presents our results that characterize
the performance, energy, and complexity attributes of both
mobile- and cloud-based solutions for medical monitoring.

III. REDUCTION OF FALSE ALARM RATE USING TMC

A. Architecture of a TMC

In clinical setting, vital signs are usually recorded, col-
lected and stored in a frequency of one sample per second
or minute, like the data in the MIMIC II database [7],
we thus emulate the real-time vital sign data inputs of the
mobile telemedicine device by loading the patients’ records
of MIMIC II database. Due to the constraints on battery
life, computing power, and storage space, mobile devices
often execute light-weight algorithms to serve as a simple
real-time monitor with high false alarm rate. In this work, a
TMC has been considered to validate how much a TMC can
help to reduce the false alarm rate by implementing more
complex algorithms on the powerful cloud. The TMC soft-
ware architecture is shown in Figure 2. Each mobile device
runs multiple local applications, which handle light-weight
tasks. Virtual machines (VMs) are assigned to execute more
powerful but computing intensive algorithms.

B. Algorithms

In patient monitoring, the collected signals may be from
different types of sensors, for example, ECG signal is
bioelectrical while BP is biomechanical. Based on the non-
commensurate characteristic of the raw sensor data, obser-
vational physiological data cannot be combined directly and
only can be fused at feature level or decision level. Past years



have witnessed the development and application of many
patient monitoring signal processing and information fusion
algorithms. In order to verify the effectiveness of TMC in
reducing the false alarm rate, two algorithms have been
selected: Fuzzy Logic and SVM (both the Linear SVM and
RBF SVM are considered). Due to the limited space, only
a brief introduction to these algorithms is given below. For
interested readers, please refer to the references for details.

Fuzzy logic is a type of probabilistic logic dealing with
the approximate situations rather than exact case. Since
health, illness and disease are matters of degree and may
be influenced by time, human activity, environment or many
other factors [2], fuzzy logic could be suitable for monitoring
the patients health status. It has already been applied in
the medical area to determine the disease risk, medical
control systems, drug dose and so on. Generally, the fuzzy
logic system consists of 4 parts: fuzzification, fuzzy rules,
aggregation and defuzzification.

Support vector machine (SVM) is a supervised model
in pattern recognition algorithms. The main idea of SVM
is to find a hyperplane to separate two classes of data so
that the distance from the hyperplane to the nearest training
data point of any class is the largest one. Sometimes linear
SVM is not effective to handle all the cases, so nonlinear
classification is created to deal with more complex situations
and map the dataset into a higher dimensional space using
a “kernel function”. The most commonly used nonlinear
kernels are polynomial, Gaussian, and RBF functions [4].

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

The mobile device used in this experiment is a Google
Galaxy Nexus smartphone with the Android 4.1 Jelly Bean
system. The Galaxy Nexus phone contains a 1.2 GHz dual-
core ARM Cortex-A9 microprocessor, 1 GB memory and a
1,750 mAh battery. The computing server used for emulating
a cloud environment is a Dell PowerEdge M620 server,
equipped with 12 Xeon 2.5 GHz cores and 64 GB memory.
The TMC software architecture is shown in Figure 2.

The metrics adopted to evaluate the performance of these
algorithms includes true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). Among them,
the most critical ones are the TP Rate, which is the detection
rate, and the FP Rate, which is the ratio of false alarms that
were raised when it is actually not a real medical condition.

B. False Alarm Rate Reduction

All of the fuzzy logic and (linear/RBF) SVM algorithms
have been implemented on both the mobile device and the
cloud server. In this study, we primarily focus on detecting
the abnormalities of vital signs using the heart rate (HR) and
arterial blood pressure (ABP). Two sets of data from MIMIC
II database have been used. The first data set consists of
numeric data (1 sample per minute) from 10 patient records

including 272 golden alarms. In some cases, there are more
than one golden alarms within one minute period, which
are merged into one alarm. There are 49,427 samples in
total and no post-processing since the data is sampled in
one minute. The second data set consists of waveform data
(125 samples per second) from the same 10 patient records
including 2,556,908 samples in total and 297 golden alarms.
We tested the performance on the waveform data without
post-processing and with post-processing of ±60 seconds.
The purpose of the post-processing is to reduce the mis-
counting of repetitive alarms within a very short period
of time. For instance, there are three alarms reported for
three consecutive samples to indicate a detected abnormal
condition, while maybe only one alarm is activated in the
middle sample to indicate the same problem. In this case, we
can reasonably group those three detected alarms together
without reporting any false alarms. The experimental results
are summarized in Table I.

Case 1. Numeric Data-based Processing: Based on the
numeric data set, the fuzzy logic algorithm has detected 88
out of 272 golden alarms and raised 1,515 false alarms. It
is corresponding to a 32.35% detection rate and a 3.08%
false positive rate. The linear and RBF SVM algorithms have
detected 207 and 217 golden alarms respectively. RBF SVM
obtained the highest detection rate 79.78%, but the false
positive rate is also very high, 32.46%. In contrast, the linear
SVM achieved a much lower false positive rate, 15.7%, with
a detection rate of 76.10%.

Case 2. Waveform Data-based Processing, without
Post-Processing: The performance of these algorithms is
very interesting when the waveform data set is applied.
The linear SVM achieved a detection rate of 91.25% with
an acceptable 12.39% false alarm rate within the shortest
processing time. With a detection rate of 58.25% and false
alarm rate of 4.63%, the fuzzy logic algorithm outperformed
the RBF SVM algorithm except a much longer processing
time. Again, the linear SVM achieved a well balanced per-
formance: shortest time, highest detection rate, and tolerable
false alarm rate.

Case 3. Waveform Data-based Processing, with Post-
Processing of ±60 seconds: The post-processing has pro-
moted the performance for all three algorithms, such that all
three detection rates are higher than 90%. In particular, the
linear SVM achieved a 97.98% detection rate. The advantage
is not so clear. If a low false alarm rate is more critical as
long as a satisfactory detection rate is achieved, RBF SVM
or fuzzy logic algorithms are reasonable options. However,
the linear SVM is still the preferable if the highest detection
rate is the dominant factor.

Summary: The experimental results reveal a very in-
teresting finding, that is, SVM algorithms consume much
less time compared to the fuzzy logic algorithm, while
SVM is often believed to be more complex and time-
consuming than fuzzy logic. The reason behind that is,



Table I
PERFORMANCE OF MULTIPARAMETER MEDICAL MONITORING

Methods TP TN FP FN TP Rate (%) FP Rate (%) Time on Cloud (second) Time on Mobile (second)
Numeric Data-based Processing

Fuzzy Logic 88 47,641 1,515 184 32.35 3.08 1.08 141.78
Linear SVM 207 41,434 7,721 65 76.10 15.70 0.07 15.79
RBF SVM 217 33,403 15,752 55 79.78 32.46 0.09 16.85

Waveform Data-based Processing
Fuzzy Logic 173 2,438,138 118,473 124 58.25 4.63 31.44 4,601.36
Linear SVM 271 2,239,729 316,882 26 91.25 12.39 1.23 881.27
RBF SVM 129 2,502,986 53,625 168 43.43 2.10 5.34 1,108.87

Waveform Data-based Processing (with Post-processing of ±60 seconds)
Fuzzy Logic 273 2,447,283 109,328 24 91.92 4.28 31.65 4,718.86
Linear SVM 291 2,257,712 298,899 6 97.98 11.69 1.50 997.60
RBF SVM 270 2,509,801 46,810 27 90.91 1.83 5.55 1,225.54

the most dominant process in machine learning algorithms,
such as SVM and ANN, is the complex training procedure.
By carefully choosing and managing a fairly small training
dataset, we can even observe the execution time for SVM is
smaller than fuzzy logic. It is expected the execution time
will be significantly increased as the SVM moves to a rather
larger training data set (exponentially).

As the experimental results show, the cloud servers can
afford more computing overhead and achieve high detection
rate at the cost of an acceptable false alarm rate. The
processing on the cloud can adequately meet the ”real-
time” requirement of patient monitoring by accomplishing
the job in several seconds, which represents over 100X
speed up against the mobile-based processing and indicates
the superior advantage of cloud-based physiological signal
processing over the pure mobile-based processing. Besides
the challenges of processing time, mobile devices also face
another challenge from the perspective of battery life, which
will be discussed in the next subsection.

C. Mobile Device Performance Evaluation

Study 1. Maximum Battery Life: During the experi-
ments, all peripherals (i.e., WiFi, Celluar, Bluetooth, and
backlight) are turned off to maximize the battery life of
the mobile device for telemedicine applications. The fully
charged Android smartphone can only sustain for about 33
hours, significantly less than the claimed standby battery life
of 270 hours. It shows that even with the most advance d
smartphones, it is still infeasible to deploy and rely on the
mobile devices for continuous medical monitoring and other
telemedicine applications on a daily basis.

Study 2. Battery Life under Computing Intensive Tasks:
In this experiment, we purposely turned off the automatic
power scaling in Android devices to force the micropro-
cessor to remain in power-draining active mode. To emulate
the scenario of intensive computation, four vital sign signals
are continuously fed into the device and processed by the
fuzzy logic algorithm. The observed battery life is about
6.72 hours, a level that is prohibitive for analyzing large-
scale, highly sampled physiological data and deploying more
sophisticated processing algorithms on mobile devices.

V. CONCLUSIONS
Leveraging the recent advances in mobile technologies

and cloud computing, telemedicine is on the verge of a
substantial transformation that will strengthen the effective-
ness and efficiency of healthcare delivery. In this paper, we
present a preliminary performance study of mobile cloud to
demonstrate its potential in performing continuous health
monitoring in daily life and achieving higher diagnostic
accuracy. Our findings also unveil the limitations of existing
mobile devices in performing telemedicine by themselves.
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