
BLINK: Securing Information to the Last Connection
Scott Craver, Yu Chen*, Hao Chen, Jun Yu, Idris M. Atakli

Dept. of Electrical & Computer Engineering, SUNY - Binghamton, Binghamton, NY 13902

ABSTRACT: Robust cryptography provides confidentiality
and integrity for information transferred between peers.
However, the decrypted plaintext in the memory of a
receivers’ computer is vulnerable—both to surveillance at
the endpoints, and users who choose to forward confidential
information. In this paper, we proposed a novel scheme
called BLINK, which uses a reconfigurable hardware based
decoder which operates on the link between a computer and
its display. It moves the decryption outside the computer,
preventing plaintext stealing, forwarding, screen capture
and printing. Currently we are implementing the BLINK
scheme on top of Altera FPGA board with Digital Visual
Interface (DVI) ports, the correctness, effectiveness, and the
performance will be evaluated through experiment.

Keywords: Data Security, Reconfigurable Hardware, FPGAs.

1. INTRODUCTION
Information security is an essential requirement in

communications. Robust cryptography has been applied
widely to provide confidentiality and integrity for
information transferred through the communication
channels. However, messages stored in the sender’s or
receiver’s computer are still susceptible to interception.
Many tools are available to read memory data and violate
the confidentiality requirements. Not only is this
susceptible to interception on the recipients’ machine, but
once decrypted, a document may be copied, printed, or
otherwise leaked by a user who is insufficiently vigilant.
To preserve secrecy, a message should remain encrypted
until it is necessary for its intended recipient to view it.

In order to transfer confidential information securely
online, the capability of exerting access control over
decrypted documents is mandatory, such as prevention of
copying, forwarding, or printing confidential materials.
Under certain scenario, it is desired that a sent message
bear some self-destruction feature: rendering a message
unreadable beyond a set lifetime.

One solution to this problem is through customized
software that exerts strict control over documents sent to
users. However, people are used to using existing
applications, and multiple operating systems (OS) or
versions thereof. Requiring customized software limits
users, and carries with it a restriction on the machines and
OS versions that an organization can use. Furthermore,
the security of software depends on the security of stored
keys, which are vulnerable to reverse-engineering.

In this paper, we propose BLINK, or Brief-Lifetime
Ink, a novel approach that encrypts sensitive data as
bitmap images, encrypted in the pixel domain, and
deciphers these images on the video link, beyond the
reach of software. Confidential documents never exist as

plaintext in either the computer system memory or video
memory. This approach prevents the capturing of
message from within the computer system, as well as
preventing copying, pasting, screen capture or printing of
a confidential document. It also allows the use of any
Email, browser or other software, and does not require
any specific operating system to work.

As shown in Figure 1, a hardware deciphering device
is placed inline on the Digital Visual Interface (DVI)
cable between the computer graphics card and the
display. We select DVI because it was designed to
supersede the old VGA interface. The device contains a
set of decryption keys. When the user presses a button,
the device identifies a scrambled image by a
synchronization pattern in the DVI signal, and then
decrypts the appropriate screen area in order to display
the content of the secret message.

We adopt the Transition Minimized Differential
Signaling (TMDS) link transmitter as the platform of our
BLINK scheme [1]. TMDS is a technology for
transmitting high-speed serial data and is used by the DVI
and HDMI video interfaces, as well as other digital
communication interfaces.

Figure 1. BLINK Architecture

2. TMDS ENCODER & DECODER
According to the specification of TMDS link, all data

transmitted through the TMDS link are encoded, while
our scheme does perform the decryption operation at the
middle of the link. In order to achieve this goal, it is
necessary to decode the received data through the TMDS
link before the process is started. After the process is
done, it is also necessary to re-encode the decrypted data
in order for continuing transmitting to terminal monitor
via TMDS link. Fortunately, since the decryption module
features the same interface as the TMDS links, which
means the standard encoders and decoders used for
TMDS link are applicable for our application. Figure 2(a)
shows the TMDS channel map [1], and Figure 2(b)
demonstrates where decoder and encoder are inserted into
the data path of the channel.

(a) The TMDS Channel Map

(b) Locations of Decoder & Encoder

Figure 2. Illustration of Decoder & Encoder Locations
As shown in the TMDS channel map of Fig.2(a),

there are four channels. Except for the channel_C pin
which does nothing but pass the reference clock at
character rate, the three channels possess the same
structure. From the perspective of hardware design, as
long as one channel has been designed, the other two
channels can instantiate the structure of this channel.
Design tools will automatically handle the other issues.

We’ve successfully built a decoder and encoder with
Verilog-HDL coding on the Xilinx ISE 9.1 design
platform. The decoding algorithm can be represented by a
Finite State Machine (FSM) as shown by Fig. 3(a). The
FSM stays in idle if there is no activity. When certain
event triggered the FSM, it starts to move forward based
on its determination. It takes one clock cycle for a process
in current state moving to the next state. It takes only two
clock cycles for a process moving form idle back to idle.
Comparing with software implementation, parallel
execution is more efficient than serial execution.

The FSM of encoder is presented in Figure 3(b).
Eight bits data along with other control signals will be
fetched at the beginning. After one clock cycle, this eight-
bit data will be expanded to nine-bit data. With certain
determination, the FSM choose either flip the data bits to
keep the DC-balance or do nothing. According to the
different DE value, FSM will take the encoder to generate
corresponding control data or pixel data. As a result, ten
bits data will be finally output. Though the encode
algorithm is more complicated than decode algorithm, the

FSM of encoder takes the same clock cycles as the FMS
of decoder to complete the processing.

(a). FSM of Decoder (b). FSM of Encoder

Figure 3. Illustration of FSM

We tested the decoder and encoder via simulation.
Both decoder and encoder were hooked up directly. The
rationale is that the raw data and the processed data
should be the “same”, if there is nothing being connected
between the decoder and the encoder. The result of
simulation verified that only four clock cycles were taken
to execute the whole decode and encode operation from
the beginning to the end, which matches our expectation.
Comparing with software implementation, concurrent
execution is more efficient than serial execution.

3. CONCLUSION
In this paper, we proposed BLINK, a novel scheme

that secures the information to the last connection. Blink
documents are encrypted bitmap images, which can be
identified and scrambled by a dedicated device on the
display link. We implemented a prototype, an embedded
descrambling device working inline on the DVI cable
which is able to carry out stream cipher decryption and
then send the decrypted pixel values back to the display.
By using this system, decrypted message would ever exist
neither in the system memory nor the video memory of a
computer, hence it would nullify all possible software
attacks. Moreover, since any computer systems using
DVI cable to connect graphics card and display will
follow the DVI specification, our system is independent
of any software applications and operation systems.

In our ongoing efforts, we are implementing the
Trivium decryption algorithm [2] on FPGA device. And
system level experiment will be conducted once the
function blocks are tested.

REFERENCES
[1] Digital Display Working G Digital Display Working

Group. Digital Visual Interface DVI - Revision 1.0, 1999.
[2] C. De Canniere and B. Preneel, “Trivium Specifications”,

eSTREAM, ECRYPT Stream Cipher Project,
http://cr.yp.to/streamciphers/trivium/desc.pdf, 2006

