A Study of Entropy Sources in Cloud
Computers:
Random Number Generation on Cloud Hosts

Brendan Kerrigan and Yu Chen

Dept. of Electrical and Computer Engineering, SUNY - Binghamton

Abstract. Cloud computing hosts require a good source of cryptograph-
ically strong random numbers. Most of the standard security practices
are based on assumptions that hold true for physical machines, but don’t
translate immediately into the domain of virtualized machines. It is im-
perative to reconsider the well accepted security practices that were built
around physical machines, and whether blind application of such prac-
tices results in the possibility of a data breach, machine control, or other
vulnerabilities. Because of Cloud computers reliance on virtualization,
access to the hardware based random number generator is restricted,
and virtualization can have unforeseen effects on the operating system
based random number generator. In this paper, the entropy pool poison-
ing attack is introduced and studied and a Cloud Entropy Management
System is proposed. Extensive experimental study verified that there are
measurable problems with entropy in Cloud instances, and the manage-
ment system effectively solves them.

1 Introduction

A rapidly growing trend is the offloading of computing resources from internally
owned and operated infrastructure to the Cloud. Outsourced computing is often
cheaper and incurs less business overhead than maintaining private computing
infrastructure. Businesses may also build private Clouds, which often reduce the
amount of infrastructure necessary by increasing the utilization of computing
resources. Cloud computing also brings new challenges, and the aggressive adop-
tion of Clouds could lead to a large population of highly concentrated machines
that are vulnerable to different attack vectors.

The combination of multiple users on a single physical machine raises many
security concerns. Many of these issues are related to issues that operating sys-
tems had to address when they went from single user to multiple user systems.
Of main concern is keeping one user’s data, activity, programs, and resources
separate from all others. In the Cloud arena, this means keeping virtual ma-
chine information and state separate from other virtual machines, and insofar
as it’s possible to keep the virtual machine activity and state separate from the
controller that schedules operating systems.

Creating such secure partitions while maintaining the advantages and flexi-
bility of Cloud services is a difficult task. Other issues include the migration of

data across networks (sometimes instances are moved due to heavy local ma-
chine load), inheritance of security vulnerabilities from platforms used to con-
struct Clouds, trust of the Cloud operators (an unavoidable concession in public
Clouds), and new vulnerabilities that emerge from a Cloud’s architecture and im-
plementation. Creation of fully homomorphic encryption systems is an essential
key tosolving the trust problem of public Cloud operators. Such a system would
allow users to encrypt their data, send it to the Cloud for some computational
purpose, and the Cloud would perform that computation on the encrypted mes-
sage, returning an encrypted result. This protects the data because it is never
decrypted on the shared system. Inherently the robustness of such a system re-
lies on truly physical random sources. It is critical to identify, demonstrate, and
provide a solution to securing the possible vulnerabilities.

The main focus of this work is to explore evidence of weaknesses in the gen-
eration of random numbers in Cloud hosts, and provide tools for mitigation of
these weaknesses. A thorough background on the generation of random num-
bers is presented, along with the reasoning why currently accepted methods for
random number generation don’t translate immediately into the Cloud environ-
ment. A series of experiments has been conducted to reveal statistical weaknesses
in the way random samples are processed by Cloud guests and the controlling
operating system. To address these weaknesses, a customized Cloud Entropy
Management System is designed and implemented.

2 Random Number Generation

This section provides a brief explanation on the generation of random numbers
on computer systems, focusing on the difference between a true random number
generator (TRNG) and a psuedo-random number generator (PRNG) including
the PRNG used in the Linux kernel.

Currently computers generally rely on two sources to gather randomness, one
which measures hardware noise (hardware RNG), and another that conditions
user-input to derive a certain amount of randomness which is used to seed a
pseudo-random number generator. An interesting contrast with most computer
functionality, generation of random numbers is actually very slow.

Corresponding to the two sources, there are two commonly recognized types
of random number generators in computers. The first, a TRNG, measures some
physically random features to generate bits. These are bits of entropy; true
randomness, especially following some conditioning for the elimination of biases.
The second, a PRNG, is a deterministic algorithm which produces streams of
random appearing numbers based on some random input ‘seed.’

True Random Number Generators (TRNG). TRNGs are somewhat of a
burden to semiconductor designers because the standard design requires analog
components, at a large power consumption price, and also considerable redesign
costs because the analog designs don’t scale down quite as neatly as the digital

e >

Fig. 1. Schematic of random source used in Intel’s Bull Mountain Digital Hardware
RNG

counterparts when a new process technology is transitioned to (e.g. 45nm to
28nm) [1].

The basic theory of operation behind a TRNG is amplifying some noise in
the system, generally the thermal noise in a resistor, and sampling that signal.
This very basic design has some shortcomings such the rate of bit generation and
power consumption, and Intel made improvements to it [1]. Instead of simply
sampling the noise, the amplified noise was used to control a voltage controlled
oscillator. Another oscillator, at 100x the frequency, is then used to create a
two bit signal. To remove possible biases, a “von Neumann corrector” is used.
The output of the corrector is then run through a secure hash algorithm before
it is accessible from its application interface. It could produce random bits at
300Kbit /sec.

Intel has again looked to create a better random number generator recently,
this time side stepping the problems with TRNGs to the present by creating
an all digital generating circuit [2]. This alleviates the power consumption of
analog amplifiers, and simplifies the moving of a design between fabrication
technology. Their solution, code named Bull Mountain, violates common digital
design practices used to ensure stability in the name of creating randomness.
The circuit used as a random source is shown in Figure 1. Note that each input
node of the inverter has two drivers, the output of the other inverter, and the
drain of a pFET with a clocked gate. When the clock is low, both inverters have
their input forced to high. This is where the circuit is in a metastable state, and
the final stable output will be detemined by thermal noise that exists because of
the resistive losses in the transistors. Each time the inputs are forced into that
metastable state, one bit of randomness is produced. Again these raw random
measurements are not used directly, but go through some conditioning like the
von Neumann corrector. Once finished conditioning, the output should then be
used to seed a quality PRNG.

Pseudo-Random Number Generators (PRNG). Psuedo-random number
generation is the use of deterministic algorithms to produce a seemingly random
sequence of numbers. By itself, a PRNG is a poor source of randomness, as
knowledge of the seed value is all that is needed to reproduce the output. This
makes the secrecy of the seed paramount. Other attacks are also described that
PRNG algorithms can be vulnerable to [6].

There are also a number of different PRNG algorithms, and parameters for
the algorithms can have an enormous effect on the statistical quality of the
output. Being the goal is a uniform distribution, a good PRNG will generate
each number in the entire range, regardless of seed. A chronological background
of selected popular generators follows.

For many years, PRNGs were created based on Prime Modulus Multiplicative
Linear Congruential Generators (PMMLGC) [13]. A generator, g, is an element
of a group, G, which when raised to integer powers, generates a cyclic subgroup
belonging to G [15]. In this case, the group is the integers (without 0) over a
prime modulus. This relies on some number and group theory results.

A very efficient PRNG can be constructed from shift registers with feedback.
These generators rely on bitwise shifts, and usually the XOR operation, and are
in general called General Feed-back Shift Registers (GFSRs). However, they do
perform poorly on some statistical tests for randomness, such as initialization
sensitivity and partitioning problems [3].

An interesting solution to the problem of apparent parallel hyperplanes in
these generators is to carefully combine the output of two generators, creating
what is a called a combined PRNG [14]. The resultant sequence of pseudo-
random numbers, after combination, doesn’t exhibit the apparent parallel bias-
ing.

Two less traditional approaches have been proposed in [4] and [5]. In [4] a
cryptographically secure pseudo-random number generator, named Yarrow, is
created. The main idea in Yarrow is to keep a more conservative estimate of the
real entropy gathered from the system, and only keep an entropy accumulator, as
opposed to a giant pool with the samples mixed in. The accumulator is then used
in combination with one-way hash function to provide random numbers. The
width of the accumulator is a major drawback to high performance applications.

The designers of Yarrow relooked at the problem a few years later, with a
focus on removing need for highly precise entropy estimation. Their new scheme,
named Fortuna [5], relies on keeping 32 pools of entropy, and spreading the
entropy across the pools in an even manner.

The Linux RNG (Twisted GFSRs). The Linux kernel provides two charac-

ter devices which output random numbers, /dev/random (blocking) and /dev/urandom
(non-blocking). Cryptographic services are recommended to avoid the use of the
non-blocking random numbers, as they could be open to state compromise ex-
tension attacks [6]. The quality of the outputs of the random number generator

relies heavily on the entropy provided by the input.

The Linux RNG collects entropy by measuring inter-interrupt timing from
various sources, mainly the keyboard, mouse, disk read and writes, and network
interrupts [7-9]. Cloud instances are starved of the first three, and are largely
dependent upon network interrupts for entropy. This has significant ramifica-
tions for the security, because these interrupts not only contribute to the virtual
machines entropy pool, but also to the scheduling operating system’s entropy
pool.

The inter-interrupt timings are used as input, along with the current pool
contents, to a twisted General Feedback Shift Register. The output is fed back
into the pool. Finally if a read of the pool is requested, the pool is used as
the input to the Secure Hash Algorithm (SHA). This step is to provide further
security to the secret state of the entropy pool, as SHA is considered to be
irreversible. While the SHA is currently considered good in that respect, there is
a possibility of the algorithm being analyzed where attack is possible. It would
be desirable to run SHA on the entropy samples. However, it would have serious
overhead when being called so frequently.

3 Distributed vs. Shared Entropy Distribution

In this section, scheduling in the Xen hypervisor is discussed to provide the
necessary understanding of how virtualization scheduling leads to hypothetical
weaknesses in random number generation in virtual machines, and the virtual
machine monitor itself. When it comes to entropy sources on cloud systems, each
level of service may offer access to a different type of source. For Infrastructure as
a Service (IaaS) systems, entropy sources are distributed among the instances;
each instance generates its own random numbers. For Software as a Service
(SaaS) and Platform as a service (PaaS), it is possible that all services share a
common pool of random numbers.

There are advantages and weaknesses to both approaches. The advantage of
a distributed entropy generation is the control in selecting how random numbers
are generated, and the separation from possible adversaries. It does however open
up the possibility of attacks on the privileged operating system that schedules
instances. In shared entropy systems, it is possible for a malicious user to drain
entropy from the entropy pool faster than it can be filled, leading to performance
degradation of other users and possible denial of service. If a shared entropy
system is unable to create random numbers at a rapid enough rate, it would
stand to limit access to the pool, or even market the access. In cloud computers
that leverage the Xen virtualization hypervisor, high entropy sources are scarce.
This scarcity will be explained in the next section.

3.1 Xen Scheduling

The Xen system has a multitude of different schedulers, which use various mech-
anisms to decide which operating system gets scheduled next. The scheduling of
operating systems is analogous to the scheduling of processes within an operating

system. The main three schedulers that Xen uses are the Borrowed-Virtual-Time
(BVT) scheduler, the Earliest Deadline First Scheduler (SEDF), and the Credit
scheduler [12]. There is also a round-robin scheduler, which will be used to sim-
plify the presentation of attacks. The BVT scheduler allows latency sensitive
applications to jump the scheduling queue, at the cost of owing that CPU time
at a later point [10].

In the sEDF scheduler, anytime a process is scheduled, the priority queue of
processes is searched for the one with the most imminent deadline [11]. Both of
these schedulers are to be deprecated in future Xen versions. The credit sched-
uler is the most recommended scheduler by the Xen maintainers, and tasks are
scheduled based on a currency based system where Virtualized CPUs (VCPUs)
are scheduled in a queue, and ‘pay’ for real CPU time. Each VCPU receives an
allowance from an accounting system.

In Section 6, we use a round robin approximation, assuming an attacker saves
his VCPU credits (used as a score in normal Xen scheduler) for a few rounds of
scheduling, and hence has a reliably long window to execute the attack.

4 Attacks on Cloud Entropy Sources

Two possible attacks on cloud entropy were conceptualized. One is the random
number pool depletion attack that focuses on a shared entropy distribution archi-
tecture like that of a PaaS cloud might have, and another one is the entropy pool
poisoning attack that focuses on a distributed entropy distribution architecture
like an TaaS cloud would likely have. The latter is the focus of this paper.

I 7

€3 €4

Fig. 2. Overview of Scheduled Pool Poisoning Attack

Pool Poisoning Attack The entropy pool poisoning attack is a theoretical
attack with dire consequences for victims, from attackers being able to decrypt

secured traffic (exposing for instance, credit card numbers) up to arbitrary code
execution through remote procedure calls (RPCs). From a high level, the at-
tacker tries to make contributions to another user’s entropy pool, by generating
interrupts with known delays between them. Those delays are run through the
Linux RNG as input, and provide some knowledge of another user’s entropy pool
contents.

I = {i05i17i27"'al‘Z7i*a"'ainfl77;n}
E = {eg,e1,e2,€3,e4}
T = (AtQ,AthAtg,...,Atm)

Where:

— I: set of n instances on the cloud host

— i, attacker instance

— i*: dom0 operating system

— E: set of attack events (enumerated in detail below)

— 7: Sequence of inter-interrupt timings generated by i, during e;

Note that with respect to interrupts, i* “sees” all the interrupts that the cur-
rently scheduled instance “sees”. Below is an enumeration of the events in E:

eo Flush the entropy pool (deplete until empty, then stop)
— €1 Begin sending TCP packets.

— eg Stop sending TCP packets.

e3 Read the entire entropy pool.

— e4 Transmit or store before time slice ends.

For clarity, note that in e; every TCP packet that is sent is followed by the
next At; over the entire sequence 7. Following these steps, the entropy pool of
1" should be full of the contributions matched in the copy of the entropy pool
that is stored or sent in ey4.

5 Cloud Entropy Management System

In this paper, a Cloud Entropy Management System is proposed to address
the weaknesses of entropy generation on Cloud instances. The Cloud Entropy
Management System was created to operate on the cloud hosts to help provide
guests with more refined estimates of entropy in their pool. It also provides
a mechanism for getting rescue entropy in the case where entropy production
from the cloud hosts is insufficient to provide for a workload that requires a
large quantity of entropy. This design uses the philosophy of least intervention,
allowing the existing kernel PRNG to operate normally, but giving it a more
realistic estimate of the entropy in its samples. This allows the kernel PRNG
to operate under the assumptions the PRNG creators outlined in the source
file (namely that secrecy of entropy contributions is maintained and accurately
estimated.) The amount of true entropy bits in a physical cloud host is not

very straightforward. In general estimating entropy is difficult, however, it is
important to have a reasonable estimate, as this is used as a parameter in the
number of samples mixed into the pool. The Linux kernel provides easy access
to the estimate in the proc filesystem. The entropy management system looks
to provide a more reasonable entropy estimation to overcome accumulation of
errors in each sample. Figure 3 shows the operation of the system. Each cloud
host runs a server which provides service to the instances that run on it. If a
cloud instance on the server is running the Entropy Manager, it will connect on
start up to the server. The server provides a count of the number of instances on
the cloud, which is used as a divisor for the entropy estimate on the guest. This
is a consequence of the principle earlier mentioned that the sum of the entropy
of the virtual machines cannot exceed the entropy of the physical host. This
divisor is broadcast to clients.

Consequently, the Linux PRNG will use this updated estimate to provide
appropriate feedback to internal thresholds used to control generation. Finally,
in order to provide for flexibility, the client can request entropy packages from the
server. For testing, one source of entropy is a HTTP GET request to random.org
for 2KB of digitally sampled atmospheric noise.

There are some security concerns (namely packet snooping between the cloud
host and random.org) with this, but it is only used as a proof of concept. For in-
stance, if an attacker was able to intercept the HT'TP response from random.org,
and knew the hash function used, the system would provide no extra security.
There are methods that could be used to overcome this fairly easily, such as
employing encryption between the two, or even adding some local entropy to
the sample before the hash function.

The server program is designed to allow flexible source selection. This was
done in anticipation of new sources becoming available, such as the Bull Moun-
tain source [2]. Emergency entropy is added to the entropy estimate, then the
total is checked again to ensure that the estimate hasn’t changed in the mean
time. Following this, a read is allowed to return.

6 Experimental Study and Results

Building an Experimental Cloud. Initial work was done on the Amazon
EC2 cloud, however flexibility required for experimentation required a private
Xen Cloud Platform to be setup. The test cloud host was small, however it is
sufficient for the testing required. The private cloud host consisted of a Dell
PowerEdge 2950 server with the following specifications: 2x Quad-core Xeon
E5335 Processors @ 2GHz, 8GB @ 667MHz, and 500GB of Storage.

6.1 Pool Poisoning Attack

The pool poisoning experiment revealed the source of entropy weakness in cloud
guests. The entropy contributions used in the Linux RNG consist of the jiffie,
num, and cycle variables. Each interrupt causes a read on these variables. Jiffie

: Virtual
| Network
|

Client (domU Instance)

pREEIET}

Server (domO instance)

updateDivisor()
broadcastDivisor()

EntropyEst
\=newDiv

uédateLocalDivisor() E ent_divisor

call to
/|readrand(n)

return
oolExtractin)

fﬁéﬁf&j@iﬁ; FUfilEntReqx) divisoris0dd)
H F
EntSourcel(x)

EntropyEst
()
mixPackintoPool (n) ent_pack EntSource2(x)
I

Hlil
¢

Fig. 3. Activity diagram of the Entropy Management System

is a counter of the number of timer interrupts generated (every 4ms in Linux).
Num indicates the type of interrupt, such as keyboard, or network. Cycle is
a free-running counter register available in x86 CPUs that runs at the clock
frequency.

Invariability of jiffie and num. In Figure 4, the invariability of both the jiffie
and num variables with 4 guest instances are demonstrated. After the first 300
seconds, the jiffies quantity is invariant for both domain 0, and the guest instance.
This problem is likely filtered by the hypervisor, so no guests are affected by it.
The num variable however, has significant change in all cases for domain 0, but
is completely static for all guest instances. The same invariability is observed in
the experiment over one and two guest instances.

169 Measurement of fffies Variable 168 Measurement of Num Variable
o ‘ 30 ‘ ‘
v — Dom0
Ne)
23 +H Instance 1|
C
o o+ nstance 2
2 ~— Instance 3
1]
? 1! — Instance 4
=
i3 ¥ - § —HBH— 00 —
0 500 1000 1500 w0 0 0 400 600 800 1000
Time (s] Time (s)

Fig. 4. Jiffie and num variables with 4 instances

The cycle variable. The cycle variable has a much more interesting, and
entropy rich behavior across all instances, both guests and domain 0, and are
shown in Figure 5. The guest instances show tight coupling between the cycle
variable and each other, however the domain 0 instance is largely independent of
any guest instance. In Table 1, the correlation and covariance of the cycle variable
between the guest instance and the dom0 OS is rather low. The covariance for
each pair is normalized to the first listed instance’s covariance with itself. The
correlation across guests is much higher than that of the cases with the domain
0 OS, and is shown in Table 2.

Table 1. Guest Instance Cycle contributions correlated with Dom 0 Cycle Contribu-
tions (4 guests)

Instance (with Dom 0)| Correlation| Covariance
DomU1 0.177657311|0.2019764114
DomU2 0.3175715104(0.2947513962
DomU3 0.4681160782|0.5268961915
DomU4 0.3753263986|0.3768116959

Table 2. Correlation and Covariance of Entropy Contributions Across Guest Instances

Instance Pair

Correlation

Covariance

2 Instances

DomU1-2

0.7698154055

0.7775670479

4 Instances

DomU1-2
DomU1-3
DomU1-4
DomU2-3
DomU2-4
DomU3-4

0.6424939995
0.7283067151

0.893786794
0.8870338305
0.9862760451
0.8700133244

1.6548446143
0.7936474751
2.2162510283
1.0030611841
0.9635573195
1.0424442764

6.2 Analysis of Results

The assumed ability to contribute to the domO entropy pool by generating inter-
rupts on the guest instances turned out to be largely incorrect. While this makes
the pool poisoning attack unlikely, the correlation between the guest instances
was remarkably high over large runs of the samples. This violates the assumption
made by the designers of the Linux RNG that the contributions are uniquely

4.5 T
-- DomO
4084 + Instancel 1
e—e |nstance 2
351 — Instance 3
x—= Instance 4
g f
el
2
€
D
©
=
@
o
3 i
£ I
1)
1 o 1]
i
I

1760 1765 1780
Time (s)

Fig. 5. Cycle variable with 4 instances

random; unknowable to anything but the RNG. The cycle variable is measured
by the assembly instruction rdtsc. It is zeroed on a reset of the processor, and
increases every clock cycle. The correlation is likely the result of the free running
counter register being synchronized among cores, which is typical for multicore
processors, though not guaranteed. So highly correlated guests were scheduled
on the same CPU but a different core.

The general invariance of the rest of the two-thirds of each sample does
negatively affect the entropy estimate of contributions to the pool. The num
variable was invariant due to its source, the type of interrupt generating the
event. For instance, a keyboard event would pass the keyboard scancode to the
num variable. Being that guests receive all their I/O from the network, there is no
variation. The invariance of the jiffie variable is most likely due from Xen trying
to handle the jiffie clock for guests. Entropy generation rates are negatively
affected by this. Therefore, the proposed Entropy Management System does
serve a purpose to provide an emergency source of entropy.

7 Discussions

Overall there aren’t any glaring practical security vulnerabilities that are demon-
strated in the Xen Cloud Platform, however the rate of recovery for guest in-
stances is likely overestimated, which leads to the conclusion that the estimates
were inflated throughout the tests. While this makes a theoretical cryptanalytic
attack hypothetically possible, it is not much different from other hosts which

suffer from overestimation. This is the reasoning behind the use of a dividing
mechanism in the Entropy Management System. It’s far better to underestimate
the entropy than it is to overestimate it. If a guest instance is to be cloned,
it ought to have its pool drained before cloning. Upon start up of the cloned
instances, the pool should be again drained, and finally any keys should be re-
generated. While the step of draining the pools after cloning was performed in
tests, SSH keys were not regenerated, and as a result the RSA fingerprint for all
instances was identical. Mechanisms for dealing with the shared state of cloned
instances, namely breaking the common state for things that require uniqueness,
would be a fruitful endeavor in securing cloud instances. Carelessness of users
cannot be underestimated, and tools to automate these chores would be very
useful. Another area which is hypothetically weak in respect to Cloud entropy is
the loadbalancing mechanisms and cloning mechanisms. There are times when
the instances may be loadbalanced over a public network. If an instance is cloned
or loadbalanced across a public network, it would also be prudent to drain the
pool, and regenerate keys.

8 Conclusions

In this work, we explored the potential weaknesses in the generation of random
numbers in Cloud hosts, and provided tools to mitigate these weaknesses. First,
the evidence of entropy coupling between domain U instances in Xen Cloud
Platform hosts is revealed. There is a possibility of prediction of the variable
given enough instances are under the control of an attacker.

Second, our experimental results show that virtualization affects entropy
sample collection. The num variable in particular did not change once in any
of the experiments, while the jiffie variable did exhibit one change throughout
all the experiments, apparently most changes being filtered by the virtualization
layer. Finally, the high correlation of the cycle variable is concerning, and makes
a case for entropy gathering on Xen guests to be managed differently in the ker-
nel. The use of the Cloud Entropy Management System sidesteps the problems
with the correlation of samples by providing bailout entropy that is uncoupled.
The implementation is low overhead, and consists of two daemons written in
Python. It provides a reasonable way to ensure entropy estimates and entropy
pools in Cloud guests aren’t susceptible to exploitation.

References

1. B. Jun and P. Kocher, “The Intel Random Number Generator,” Cryptography
Research Inc., white paper prepared for Inter Corp., Apr. 1999, http://www.
cryptography.com/resources/whitepapers/IntelRNG.pdf.

2. G. Taylor and G. Cox, “Digital randomness,” IEEE Spectrum 48, Sept. 2011.

3. G. Lian, “Testing Primitive Polynomials for Generalized Feedback Shift Reg-
ister Random Number Generators”. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.89.318&rep=repl&type=pdf

4. J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the design and
analysis of the yarrow cryptographic pseudorandom number generator”. Sixth An-
nual Workshop on Selected Areas in Cryptography, Springer Verlag, August 1999.
http://www.schneier.com/paper-yarrow.ps.gz.

5. N. Ferguson and B. Schneier, “Practical Cryptography”. John Wiley & Sons, pp.
161-182, 2003.

6. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic attacks on pseu-
dorandom number generators”, Fast Software Encryption, Fifth International Pro-
ceedings, pp. 168-188, Springer-Verlag, 1988.

7. Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random number
generator. In Proceedings of the 2006 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2006.

8. M. Mackall, Linux Kernel Source 2.6.32.8 Random Character Driver,
(/linux2.6.32.8/drivers/char/random.c in kernel source tree)

9. T. Beige, “Analysis of a strong Pseudo Random Number Generator by anatomizing
Linux Random Number Device”. November 2006. http://www.suse.de/~thomas/
papers/random-analysis.pdf.

10. K. Duda and D. Cheriton. “Borrowed-Virtual-Time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler.” In Proceedings of the 17th
ACM Symposium on Operating Systems Principles (SOSP ’99), Dec. 1999.

11. “Earliest deadline first scheduling” Internet: http://en.wikipedia.org/wiki/
Earliest_deadline_first_scheduling, 4 December 2010 [April 26 2011].

12. J. Mathai “Scheduling - Xen Wiki” Internet: http://wiki.xensource.com/
xenwiki/Scheduling, 09 June, 2007 [7 May 2011].

13. S. Park and K. Miller, “Random Number Generators: Good Ones Are Hard to
Find”, Communications of ACM, vol. 21, no. 10, Oct. 1988.

14. P. L‘Ecuyer, “Efficient and Portable Combined Random Number Generators,”
Communications of the ACM, vol. 31, no. 6, pp. 742-774. 1988.

15. C. Carstensen, B. Fine, and G. Rosenberger, “Abstract Algebra - Applications to
Galois Theory, Algebraic Geometry and Cryptography”. Heldermann Verlag. 2011.

