\qquad
Your TA's name:

SUNY-Binghamton Economics 160, Principles of Microeconomics, Christopher Manes Problem set 8 Game Theory

This problem set is some examples of 2×2 games.

1) Players: ruling class in China ruling class in Japan

Each country is controlled by businessmen in import-competing industries. Tariffs can make these businessmen better off (even though they reduce total surplus).
Strategies: tariffs free trade
Outcomes: producer surplus for each ruling class.

a) What is dominant strategy for

China? \qquad (free trade or tariffs) Japan? \qquad (free trade or tariffs)
b) Which boxes are Nash equilibria? \qquad (1, 2,3 , or 4 , or some combination)
2) Players: two companies, Coca-cola (or as we say in Atlanta, Co-cola) and Pepsi. Each company must choose the size of its advertising budget. Strategies: high budget low budget Outcomes: profit for each company.

Coke

Pepsi

Which boxes are Nash equilibria? \qquad (1, 2,3 , or 4 , or some combination)
3) Players: you and a classmate who have been assigned a group project. It is the night before the project is due. Each of you must decide whether to work on the project, or party.
Strategies: work party
Outcomes: Each of you wants to maximize his or her own happiness. If you both work, you both get an A. If you ooh party, you both get a D. If one parties and the other works, you both get a B. Partying increases happiness by $: 5$ units. Studying per se adds zero units to happiness. Happiness is also affected by your grade. An A gives 40 units of happiness to each of you; a B gives 30 units happiness to each; a D gives 10 units of happiness. Fill out he table below with total happiness for each of you.

Party
 Classmate

Yon

Which boxes are Nash equilibria? \qquad (1,2,3 or 4 , or some combination)

1) Players: two companies IBM Rand. These two firms produce identical mainframe computers.

Strategies: charge high price charge low price
Outcomes: profit for each company
IBM

(1) or (4)
a) Which outcome is best for the firms' shareholders? \qquad (1, or 4
b) Which boxes are Nash equilibria? \qquad (1,2,3 or 4 , or some combination)

