

Econ 362, Hanes	
First problem set on	graphing

- 1) The graph below depicts a competitive market with an upward-sloping supply curve and a downward-sloping demand curve
- a) What is the equation that is plotted out as the supply curve? $P = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} Q^S$
- b) What is the equation that is plotted out as the demand curve? $P = \underline{\hspace{1cm}} \underline{\hspace{1cm}} Q^D$
- c) The equilibrium price P^* is the price that makes $Q^S = Q^D$. What is P^* ?
- d) Rearrange your answer to a) to get the "supply equation." The supply equation is an equation that gives the quantity supplied as a function of the price.
- $Q^S =$ + P (Note: the constant in this equation might be a negative number.)
- e) Rearrange your answer to b) to get the "demand equation." The demand equation is an equation that gives the quantity demanded as a function of the price.
- $Q^D = -$ P (Note: the constant in this equation might be a negative number.)

- 2) Now I ask you to reverse the process. Consider a competitive market with a supply curve given by the equation $Q^S = -2 + \frac{1}{2}P$ and a demand curve given by the equation $Q^D = 4 \frac{1}{4}P$.
- a) Rearrange the supply equation to get the equation that is plotted out as the supply curve.
- $P = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} Q^S$ Plot this curve on the graph below.
- b) Rearrange the demand equation to get the equation that is plotted out as the demand curve.
- $P = \underline{\hspace{1cm}} \underline{\hspace{1cm}} Q^D$ Plot this curve on the graph below.
- c) From the graph, what is the equilibrium price P^* ?

d) You can get the equilibrium price without plotting out the supply and demand curves, using the supply equation and the demand equation. P^* is the value for P that makes Q^S in the supply equation equal to Q^D in the demand equation. That is, P^* is the value for P for which: $-2 + \frac{1}{2}P = Q^S = Q^D = 4 - \frac{1}{4}P$ which means $-2 + \frac{1}{2}P^* = 4 - \frac{1}{4}P^*$. In the space below, use algebra to find the value for P^* that solves $-2 + \frac{1}{2}P^* = 4 - \frac{1}{4}P^*$. Show all the steps in your math.