KEYNESIAN DSEE
NKCS/LM
$\frac{\text { Simplesterse: no persisteree in disturbancess }}{}$ $\frac{\text { interest-rate rule }}{\text { Notationt y out put grp }}$
r real interest rate miuns natural rate

$$
\pi_{+}={ }_{t}^{\pi}{ }_{t+1}^{e}+k y_{t}+u_{t}^{\pi} \text { (Romer andls whis tricky, Not ohis conls be. }
$$

plus interest-rate rale

$$
v_{t}=\phi_{\pi} \pi_{t}+\phi_{y} y_{t}+u_{t}^{m p}
$$

What is $u_{t}^{m p}$?

- Wild bchavior hy central hank
- Consequerce of rardrm mersurcmerd error in c, l, 's estimotes of current $y \& \pi$

$$
\begin{aligned}
v_{t} & =\phi_{\pi}\left(\pi_{t}+e_{t}\right)+\cdots \\
& =\phi_{\pi} \pi_{t}+\phi_{y} y_{t}+\underbrace{\phi_{\pi} e_{t}}_{u_{t}^{m p}}
\end{aligned}
$$

Rational expectations:

$$
{ }_{t}^{x_{t+1}^{e}}=E_{t}\left[x_{t+1}\right]
$$

Keynesian Dsfe
MK IS/LM
Simplest case [cont.]
persistent disturbances means

$$
\begin{aligned}
& \text { persistent distrubarees means } \\
& u_{t}^{1 s}=\rho_{1 s} u_{t-1}^{1 s}+\varepsilon_{t}^{1 s}\left(i_{1} i_{1}\right. \\
& u_{t}^{\pi}=\rho_{\pi} u_{t-1}^{\pi}+\varepsilon_{t}^{\pi} \\
& u_{t}^{m p}=e_{m p} u_{t-1}^{m p}+\varepsilon_{t}^{m p}
\end{aligned}
$$

No persistence means $e_{i s}=e_{\pi}=C_{m p}=0$

What well see'

1) Model is equivalent to OK (5)MP
2) Correlations between Y, π, r depend on which disturbances $\left(\varepsilon^{1 s}, \varepsilon^{\pi}\right.$ or $\left.\varepsilon^{m p}\right)$ are hitting. Identification.
Can a observer sec effects of an $m p$ shock?

KEYNEJIAN DJGE
NK (S/LN)
How will srive
Conjectave that $E_{t}\left[y_{t+1}\right]=0$

$$
E_{t}\left[\pi_{t+1}\right]=0
$$

then revify.

$$
\begin{aligned}
& y_{t}=-s r_{t}+\varepsilon_{t}^{1 s} \\
& \pi=k y_{t}+\varepsilon_{t}^{\pi} \\
& r=\phi_{\pi} \pi_{t}+\phi_{y} y_{t}+\varepsilon_{t}^{m p}
\end{aligned}
$$

substidute π foom $P C$ inte $1 R R$, then subbtitute r from lVe保 into 15

$$
\begin{aligned}
& \text { snlstitnktr from lVRR irto } \\
& r=\phi_{\pi}^{k y}+\phi_{\pi} \varepsilon^{\pi}+\phi_{y} y+\varepsilon^{m p}=\left(\phi_{\pi} k+\phi_{y}\right) y+\ldots \\
& y_{t}=-s\left(\phi_{\pi}^{k}+\phi_{y}\right) y-s \phi_{\pi} \varepsilon^{\pi}-s \varepsilon^{m p}+\varepsilon^{1 s} \\
& =\frac{1}{1+s\left(\phi_{\pi} k+\phi_{y}\right)}\left(-s \phi_{\pi} \varepsilon_{t}^{\pi}-s \varepsilon_{t}^{m p}+\varepsilon_{t}^{1 s}\right) \\
& \text { Sec: } \varepsilon^{\pi} \uparrow \rightarrow y \downarrow \quad \varepsilon^{m p} \uparrow \rightarrow y \downarrow \quad \varepsilon^{15} \hat{\Gamma} \rightarrow y \mid
\end{aligned}
$$

KEYNESIAN DSGE
MK 15/LM
Simplest cast...
Substitute y into $P C$, get:
$\pi_{t}=\frac{k}{1+s\left(\phi_{\pi} k+\phi_{y}\right)}\left(-s \varepsilon_{t}^{m p}+\varepsilon_{t}^{15}\right)+\left(\frac{1+s \phi_{y}}{1+s\left(\phi_{\pi}^{k}+\phi_{y}\right)}\right)^{\varepsilon}{ }_{t}^{\pi}$
See $\varepsilon^{m p} \uparrow \rightarrow \pi \downarrow \quad \varepsilon^{15} \uparrow \rightarrow \pi \uparrow \quad \varepsilon^{\pi} \uparrow \rightarrow \pi \uparrow$
Check: is $E_{t}\left[\pi_{t+1}\right]=E_{t}\left[y_{t+1}\right]=0$?
Yes!

$$
\begin{aligned}
& \text { Yes! } \\
& \left.E_{t}\left[\pi_{t+1}\right]=E_{t}\left[\ldots \ldots \varepsilon_{t+1}^{m p}+\varepsilon_{t+1}^{13}\right)+\ldots \ldots \varepsilon_{t+1}^{\pi}\right]
\end{aligned}
$$

If ε^{\prime} s are i.i.J., $E_{t}\left[\varepsilon_{t+1}\right]=0$.
Same for y_{t+1}.
Now, substitute y $\Delta \pi$ into IRR get:

$$
\begin{aligned}
& r_{t}=\frac{1}{1+s()}\left[\left(\phi_{\pi} k+\phi_{y}\right) \varepsilon_{t}^{1 s}+\phi_{\pi} \varepsilon_{t}^{\pi}+\varepsilon_{t}^{m p}\right] \\
& \text { see: } \varepsilon \hat{\imath} \rightarrow r \hat{\imath}
\end{aligned}
$$

$$
\begin{aligned}
& \text { KEYNESIAN ISGE } \\
& \text { NK (SILM } \\
& \text { Simplest casc (rond.) } \\
& \text { In IS/MP graphs }
\end{aligned}
$$

KEYNESIAN DJGE
NK 1S/LM
Simplest crse (cont.)
Observable patdirns, identification

$$
\begin{aligned}
& y_{t}=-\frac{s}{z} \varepsilon_{t}^{m p}-\frac{s \phi_{\pi}}{z} \varepsilon_{t}^{\pi}+\frac{1}{z} \varepsilon_{t}^{15} \\
& \pi_{t}=-\frac{s k}{z} \varepsilon_{t}^{m p}+\frac{1+5 \phi_{y}}{z} \varepsilon_{t}^{\pi}+\frac{k}{z} \varepsilon_{t}^{15} \\
& r_{t}=\frac{1}{z} \varepsilon_{t}^{m p}+\frac{\phi_{\pi}}{z} \varepsilon_{t}^{\pi}+\frac{\phi_{\pi} k+\phi_{y}}{z} \varepsilon_{t}^{15}
\end{aligned}
$$

where $z=\frac{1}{1+s\left(\phi_{\pi} k+\phi_{y}\right)}$
Kecall structural equations:

$$
\begin{aligned}
& y_{t}=-s v_{t}+\varepsilon_{t}^{\prime s} \\
& \pi_{t}=k y_{t}+\varepsilon_{t}^{\pi} \\
& v_{t}=\phi_{\pi} \pi_{t}+\phi_{y} y_{t}+\varepsilon_{t}^{m p}
\end{aligned}
$$

Do data, realized vaviations in y, π, r vever underlying struetuve?
Cruyou esdimate ralues of parameters lith regressions? Idertification.

KEYNESIAN DSGE
NK 15/LM
Qhervalie (corti)
If all disturbarces are $\varepsilon^{\text {Is }}$

$$
e^{1 s} \hat{\imath} \rightarrow y \hat{\imath}, \pi \hat{\imath}, r \hat{\imath}
$$

Regress π on $y: \beta=\frac{\partial \pi / \partial c^{1 s}}{\partial y / \partial e^{i s}}=k^{\text {L(}} \begin{aligned} & \text { coeff. in } \\ & P, C\end{aligned}$. reveals structure if $P C$
Kegress y on $r: \beta=\frac{\partial y / \partial \varepsilon^{1 s}}{\partial r / \partial \varepsilon^{1 s}}=\frac{1}{\phi_{k} k \times \phi_{y}}$ にf(not coiff.
Regress r on $y \Delta \pi$! ma dicollineavity!
wor't work

Disturbances to 15 equation rever structure of $P C$, bat net is equation.

KEYNESIAN DSGE

If. ll disturbances are ε^{π}

$$
\varepsilon \pi \uparrow \rightarrow y \downarrow, \pi \uparrow, r \uparrow
$$

π on $y: \beta=-\frac{1+s \phi_{y}}{s \phi_{\pi}} \bumpeq$ not coif in PC!
y on $r: \beta=-s<\sim($ coif in 15
Regress r on y $\& \pi$: wont work
D isturbances to $P C$ reveal structure of (5 , G G at not PC.

If disturbances are $\varepsilon^{13} \& \varepsilon^{\pi}$
$\pi \& y$ ne longer collinear
Regression of r on y $\& \pi$ reveals $\varnothing_{y} \varnothing_{\pi}$
Gut regressions of π on y, y on r results depend on relative magnitude of $\sigma_{15}^{2}, \sigma_{\pi}^{2}$

Keynesian doge

$$
\text { fall disturbances are } E^{m p}
$$

$$
\varepsilon^{m p \uparrow \rightarrow y \downarrow, \pi \downarrow, v \uparrow}
$$

π : on y reveals $P C$,
y of r reveals 15 ,
6 ant r on $\pi \& y$ does not revers lek

Carson
observable variation in data reveals an underlying structural equation only if none of the disturbances creating variation in date come from that equation.
You need to noderstand what kind of disturbances you're dealing with.

Keynesian osage
NK/5/LM
No persistence, monetary policy loss function
C. CS. sets r_{t} to minimize

$$
L=E\left[\frac{1}{2}\left(\pi-\pi^{x}\right)^{2}+\frac{1}{2}\left(y-y^{*}\right)^{2}\right]
$$

given info available to $C . B$, To simplify, well say $\pi^{*}=0$ (desired π
If $\mid y^{*}>0$, c. ce. is aiming to keep ont ret a bort natural rate.

$$
\text { If } y^{k}=0, \ldots
$$

Recall that in microeconomic model re used to derive these equations, natured rate is toolow dare to molurpoly - higher y world boost utility, of representative agent,

So $y^{*}>0$ makes sense. well consider rations eases.

Keymesian ssge
loss F_{n} (conts)

1) $y^{*}=0$, C. B. can't $\sec \varepsilon_{t}^{\prime} s$ when it sets r_{t}

As betory, conjectuve public's $y_{t+1}^{e}=\pi_{t+1}^{c}=0$ then verify.

$$
\begin{aligned}
& y_{t}=-s r_{t}+\varepsilon_{t}^{15} \\
& A_{t}=k y_{t}+\varepsilon_{t}^{\pi}=-5 k r_{t}+k \varepsilon_{t}^{15}+\varepsilon_{t}^{\pi} \\
& \operatorname{Min}_{t} E\left[\frac{1}{2}\left(-5 k r_{t}+k \varepsilon_{t}^{15}+\varepsilon_{t}^{\pi}\right)^{2}+\frac{1}{2}\left(-5 r_{t}+\varepsilon_{t}^{15}\right)^{2}\right] \\
& \left.r_{t}\right] \\
& \text { Recull } E\left[x^{2}\right]=(E[x])^{2}+\sigma_{x}^{2}
\end{aligned}
$$

W.in C. M_{3}, sets $r_{4} E\left[\varepsilon_{+}^{15}\right]=E\left[E_{+}^{\pi}\right]=0$
itkrovs variances $\sigma_{1 s}^{2} \sigma_{\pi}^{2}$

$$
\min _{+}[\frac{1}{2}[\underbrace{\left(-s k r_{t}\right)^{2}}_{(E[\pi])^{2}}+\underbrace{k^{2} \sigma_{1 s}^{2}+\sigma_{\pi}^{2}}_{\sigma_{\pi}^{2}}+\underbrace{\left(-s r_{t}\right)^{2}}_{(E[y])^{2}}+\underbrace{\sigma_{1 s}^{2}}_{\sigma_{y}^{2}}]
$$

Take F. o, C, $\frac{\partial L}{\partial r}=0$

$$
0=\left(-s k r_{t}^{*}\right)(-5 k)+\left(-5 r_{f}^{*}\right)(-5) \text { so } r^{*}=0
$$

KEYNESIAN DJGE

1) cont,

Result: $y_{t}=E_{t}^{1 s}$

$$
\pi_{t}=k \varepsilon_{t}^{1 s}+\varepsilon_{t}^{\pi}
$$

Check: is $E_{t}\left[y_{t-1}\right]=E_{t}\left[\pi_{t+1}\right]=0$? Yes!
Regress π on y i $\beta=K \quad\left(E_{+}^{\pi}\right.$ is residual)
Regress y in r : cantijts variation in r. What if yon regress y on real interest rally rather then real interest rate minus natural rate?
As natural rate varies, real rate does tog, so yon con try this.
Bant coefficient is zero.
So is coefficient from regression of π on real interest rate.

