Problem set on maximization of expected utility and Jensen's inequality (adapted from Romer problem 5.6)

Consider a model similar to the Diamond OLG mode. A person lives two periods, period 1 and period 2. He acts to maximize the expected value of his lifetime utility.
Lifetime utility is $U=\ln C_{1}+\ln C_{2}$.

Hint: to get your answers to the questions below, do not set up and solve Lagrangians. Just use the budget constraint to get C_{2} as a function of C_{1}, substitute that into the expected utility function and take one first order condition.
(1) Suppose a person receives labor income equal to W_{1} in the first period and no labor income in the second period. Second-period consumption is thus $C_{2}=(1+r)\left(W_{1}-C_{1}\right)$ where r is the real return to holding a unit of capital in period 2 .
a) Suppose that in period 1 people know with certainty that r will be equal to a value \bar{r}. What is C_{1} ?
b) Now suppose that in period $1 r$ is uncertain. $r=\bar{r}+\epsilon$ where ϵ is mean-zero "white noise." Note that as of period 1 the expected value of r is equal to \bar{r} from part a), and $E[\epsilon]=0$. Will C_{1} be greater than, less than or equal to the value of C_{1} you found in part a)?
(2) Now suppose a person receives no labor income in the first period. Instead he receives labor income W_{2} in the second period. To consume in the first period, he borrows at interest rate r. That is, in period 2 he must pay $(1+r)$ for each unit of consumption he received in period 1. Thus second-period consumption is $C_{2}=W_{2}-(1+r) C_{1}$.
a) Suppose that in period 1 people know with certainty that r will be equal to a value \bar{r} and also know that W_{2} will be equal to a value \bar{W}. What is C_{1} ?
b) Now suppose that in period 1 r is certain, but W_{2} is not. $W_{2}=\bar{W}+\epsilon$ where ϵ is mean-zero "white noise." Note that as of period 1 the expected value of W_{2} is equal to \bar{W} from part a), and $E[\epsilon]=0$. Will C_{1} be greater than, less than or equal to the value of C_{1} you found in part a)? Hint: apply Jensen's inequality.

