Economics 613 Problem set on rational expectations

1) Suppose aggregate demand in a economy follows

 $y_t = a (m_t - p_t)$

and the economy has a Friedman-Phelps Phillips curve:

 $\pi_t = {}_{t-1}\pi_t^e + fy_t$

where *y* denotes the log of the output gap (*y* is zero if output is equal to the natural rate of output). Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium). Everyone knows the money supply evolves according to a random walk:

 $m_t = m_{t-1} + \epsilon_t$

where ε is a mean-zero, i.i.d. random variable with variance σ_{ε}^2 . As of time (*t*-1), no one knows what the *realized* value of ε_t will be.

a) Derive $_{t-1}p_t^e$ in terms of m_{t-1} .

- b) Derive p_t in terms of m_{t-1} and ε_t .
- c) Derive π_t in terms of m_{t-1} , p_{t-1} and ε_t .

d) Derive Y_t in terms of ε_t .

e) What is the variance of *y*?

2) Suppose aggregate demand in a economy follows

 $y_t = a (m_t - p_t) + \varepsilon_t$

where ε is a mean-zero, i.i.d. random variable with variance σ_{ε}^2 . As of time (*t*-1), no one knows what the *realized* value of ε_t will be. The economy has a Friedman-Phelps Phillips curve:

 $\pi_t = {}_{t-1}\pi_t^e + fy_t$

where y denotes the log of the output gap (y is zero if output is equal to the natural rate of output). Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium). Everyone knows the money supply is always equal to a fixed value m.

a) Derive $_{t-1}p_t^e$ in terms of *m*.

- b) Derive p_t in terms of *m* and ε_t .
- c) Derive π_t in terms of m, p_{t-1} and ε_t .
- d) Derive Y_t in terms of ε_t .
- e) What is the variance of *y*?

MORE ON NEXT PAGE

3) Suppose an economy has an IS curve corresponding to:

 $y_t = -ar_t$

and a Friedman-Phelps Phillips curve:

 $\pi_t = {}_{t-1}\pi_t^e + fy_t$

where y denotes the log of the output gap (y is zero if output is equal to the natural rate of output) and r denotes the difference between the real interest rate and the natural rate of interest.

The central bank sets interest rates, not the money supply, and follows an interest-rate rule:

 $r_t = by_t + c(\pi_t - \pi)$

where π is a fixed value. Note that this interest-rate rule is consistent with the general form $r(\pi,y)$ assumed for the IS/MP model.

Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium). Solve for π_{t} .

4) Suppose an economy has an IS curve corresponding to:

 $y_t = -ar_t + \epsilon_t$

and a Friedman-Phelps Phillips curve:

 $\pi_t = {}_{t-1}\pi_t^e + fy_t$

where y denotes the log of the output gap (y is zero if output is equal to the natural rate of output), r denotes the difference between the real interest rate and the natural rate of interest, and ε is a mean-zero, i.i.d. random variable with variance σ_{α}^2 .

The central bank sets interest rates, not the money supply, and follows an interest-rate rule:

 $r_t = by_t + c(\pi_t - \pi)$

where π is a fixed value. Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium).

a) Solve for $_{t-1}\pi_t^e$.

b) Derive π_t in terms of ε_t and π .

c) Derive y_t in terms of ε_t .

d) What is the variance of *y*?