Economics 501 Problem set on rational expectations

1) Suppose aggregate demand in a economy follows

$$y_t = a (m_t - p_t)$$

(recall this can be derived from IS/LM assuming expenditure depends on the nominal interest rate)

and the economy has a Friedman-Phelps Phillips curve:

$$\pi_t = t - 1 \pi_t^e + f y_t$$

where *y* denotes the log of the output gap (*y* is zero if output is equal to the natural rate of output).

Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium).

Everyone knows the money supply evolves according to a random walk:

$$m_t = m_{t-1} + \varepsilon_t$$

where ε is a mean-zero, i.i.d. random variable with variance σ_{ε}^2 . As of time (*t*-1), no one knows what the *realized* value of ε_t will be.

- a) Derive $t_{-1}p_t^{e}$ in terms of m_{t-1} .
- b) Derive p_t in terms of m_{t-1} and ε_t .
- c) Derive π_t in terms of m_{t-1} , p_{t-1} and ε_t .
- d) Derive y_t in terms of ε_t .
- e) What is the variance of *y*?

2) Suppose aggregate demand in a economy follows

$$y_t = a (m_t - p_t) + \varepsilon_t$$

where ε is a mean-zero, i.i.d. random variable with variance σ_{ε}^2 . As of time (*t*-1), no one knows what the *realized* value of ε_t will be. The economy has a Friedman-Phelps Phillips curve:

$$\pi_t = t_{t-1}\pi_t^e + fy_t$$

where *y* denotes the log of the output gap (*y* is zero if output is equal to the natural rate of output).

Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium).

Everyone knows the money supply is always equal to a fixed value \overline{m} .

a) Derive $t^{-1}p_t^e$ in terms of \overline{m} .

- b) Derive p_t in terms of \overline{m} and ε_t .
- c) Derive π_t in terms of \overline{m} , p_{t-1} and ε_t .
- d) Derive y_t in terms of ε_t .
- e) What is the variance of *y*?

3) Suppose an economy has an IS curve corresponding to:

$$y_t = -ar_t$$

and a Friedman-Phelps Phillips curve:

 $\boldsymbol{\pi}_t = {}_{t-1}\boldsymbol{\pi}_t^e + f\boldsymbol{y}_t$

where y denotes the log of the output gap (y is zero if output is equal to the natural rate of output) and r denotes the difference between the real interest rate and the natural rate of interest.

The central bank sets interest rates, not the money supply, and follows an interest-rate rule: $r_t = by_t + c(\pi_t - \overline{\pi})$

where $\overline{\pi}$ is a fixed value. Note that this interest-rate rule is consistent with the general form $r(\pi, y)$ assumed for the IS/MP model.

Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium).

Solve for π_t .

4) Suppose an economy has an IS curve corresponding to:

$$y_t = -ar_t + \varepsilon_t$$

and a Friedman-Phelps Phillips curve:

$$\boldsymbol{\pi}_t = {}_{t-1}\boldsymbol{\pi}_t^e + f\boldsymbol{y}_t$$

where y denotes the log of the output gap (y is zero if output is equal to the natural rate of output), r denotes the difference between the real interest rate and the natural rate of interest, and ε is a mean-zero, i.i.d. random variable with variance σ_{ε}^2 .

The central bank sets interest rates, not the money supply, and follows an interest-rate rule:

 $r_t = by_t + c(\pi_t - \overline{\pi})$

where $\overline{\pi}$ is a fixed value. Expectations are model-consistent rational expectations (what you get in rational expectations equilibrium).

a) Solve for $t-1\pi_t^e$.

b) Derive π_t in terms of ε_t and $\overline{\pi}$.

c) Derive y_t in terms of ε_t .

d) What is the variance of *y*?