Does Certainty Equivalence hold for labor supply in LSF
Answer to 6.14
LS under C.E: $Z_{i n}=\frac{1}{y-1} E\left[p_{i}-p^{\prime} p_{i}\right]=\frac{1}{y-1} E\left[\ln \left(\frac{p_{i}}{p}\right)\right]$
(a) LSinuder EU:

$$
u_{i}=\frac{\hat{P}_{i} Y_{i}}{P}-\frac{1}{Y} Y_{i}^{Y} \quad(6.72)
$$

Behavior under uncertainty \& "Expected Utility"

$$
\begin{aligned}
\operatorname{Max}_{Y_{i}} E\left[U_{i}\right] & =E\left[\frac{p_{i} Y_{i}}{p}-\frac{1}{Y} Y_{i}^{Y}\right] \\
& =Y_{i} E\left[\frac{P_{i}}{p}\right]-\frac{1}{Y} Y_{i}^{Y}
\end{aligned}
$$

First-order condition:

$$
\begin{aligned}
& \frac{\partial E[U]}{\partial Y ;}=0=E\left[\frac{P_{i}}{P}\right]-Y_{i}^{* Y-1} \\
& \Rightarrow Y_{i}^{*}=\left(E\left[\frac{P_{i}}{P}\right]\right)^{\frac{1}{Y-1}} \text { in } \log 5 Y_{i}^{*}=\frac{1}{Y-1} \ln \left(E\left[\frac{P_{i}}{P}\right]\right)
\end{aligned}
$$

(b) 1 s

$$
\underbrace{\left(\frac{1}{y-1}\right) \operatorname{Ln}\left(E\left[\frac{P_{i}}{p}\right]\right.}_{2^{*} \text { under } E U}=\underbrace{\left(\frac{1}{y-1}\right) E\left[\operatorname{lr}\left(\frac{P_{i}}{P}\right)\right]}_{2^{*} \text { under } C E} ?
$$

$N 0!\ln \left(E\left[\frac{P_{i}}{P}\right]\right)>E\left[\ln \left(\frac{P_{i}}{P}\right)\right]$ so 2^{*} under $E M>2^{*}$ under $C E$
How do we know this?
"Jensen's Inequality" says:

- If $\phi(X)$ is a concave function of random variable X,

$$
E[\phi(x)]<\phi(E[x])
$$

OI If $\Gamma(x)$ is a convex function of random variable X,

$$
E[\Gamma(x)]>\Gamma(E[x])
$$

Concave function

$$
\underbrace{\phi(x)}
$$

Convex Function

L_{n} is a concave function so

$$
\operatorname{Ln}(E[x])>E[\operatorname{Ln}(x)]
$$

Does Certainty Equivalence hold? (cont.)
(c) Suppose $p_{i}-p=E\left[p_{i}-p\right]+u_{i}$ random
not a random virioble
and u_{i} is mean zero and independent of $\left(p_{i}-p\right)^{e}$
What is $\operatorname{Ln}(E[P i / p])$?

$$
\begin{aligned}
& \frac{p_{i}}{p}=e^{E\left[p_{i}-p\right]} e^{u_{i}} \\
& E\left[\frac{p_{i}}{p}\right]=E\left[e^{E\left[p_{i}-p\right]} e^{u_{i}}\right]=e^{E\left[p_{i}-p\right]} \underbrace{E\left[e^{u_{i}}\right]}_{\text {a constant }} \\
& \operatorname{Ln}\left(E\left[p_{i} / p\right]\right)=\operatorname{Ln}\left(e^{E\left[p_{i}-p\right]}\right)+\operatorname{Ln}\left(E\left[e^{u_{i}}\right]\right) \\
&=E\left[p_{i}-p\right]+\text { constant }
\end{aligned}
$$

Hence if

$$
2_{i}^{*}=\frac{1}{y-1} \operatorname{Ln}\left(E\left[P_{i} / p\right]\right)
$$

then

$$
q_{i}^{*}=\frac{1}{y-1} E\left[p_{i}-p\right]+\underbrace{\frac{1}{y-1} \text { con, }+ \text { ant }}_{\text {another constant }}
$$

