Answer T0 7.3)
How do. results of Taylor model depend on over lapping of pricesetting decisions? What if price a dustments are synchronized?
a) What is $x_{t}=p_{i t}=p_{i t+1}$?

Recall $p_{i t}=E\left[\sum_{t=0}^{\infty} \omega_{0} p_{i t}^{*}\right]$
Here, $x_{t}=p_{i t}=1 / 2 p_{i t}^{*}+\frac{1}{2} E_{t} p_{i t+1}^{*}$
and $p_{i}^{*}=\phi m+(1-\phi) p$ hence

$$
\begin{aligned}
x_{t}= & \frac{1}{2}\left(\phi m_{t}+(1-\phi) p_{t}\right) \\
& +1 / 2\left(\varnothing E_{t} m_{t+1}+(1-\phi) E_{t} p_{t+1}\right)
\end{aligned}
$$

b) Interns of m_{t} ard $E_{t} m_{t+1}$ alone?

Everyone sets price equal to x_{t}
so $p_{t}=p_{t+1}=x_{t}$

$$
\begin{aligned}
& \text { hence } \\
& x_{t}=1 \\
& \Rightarrow\left(\phi m_{t}+(1-\phi) x_{t}\right)+1 / 2\left(\phi E_{t} m_{t+1}+(1-\phi) x_{t}\right) \\
& \Rightarrow x_{t}=1 / 2 m_{t}+1 / 2 E_{t} m_{t+1}
\end{aligned}
$$

Answer to 7.3) (cont.)
C) What's y in each period, assuming $m_{t+1}=m_{t}+e$

$$
\begin{align*}
& p_{t}=p_{t+1}=\frac{1}{2} m_{t}+k_{2} m_{t}=m_{t} \quad \text { hence } E_{t} m_{t+1}=m_{t} \\
& y_{t}=m_{t}-p_{t}=m_{t}-m_{t}=0 \\
& y_{t+1}=m_{t+1}-p_{t+1}=m_{t+1}-p_{t}=m_{t+1}-m_{t}=e_{t+1}
\end{align*}
$$

Note: \varnothing docsn't natter for effect of e on y

$$
\begin{aligned}
& e_{t+1} \text { wont affect } y_{t+2}, y_{t+3}, \cdots \\
& y_{t+2}=0 \\
& y_{t+3}=e_{t+3}<2 \text { (nreorvelated } \\
& \text { with } e_{t}
\end{aligned}
$$

