Economics 614 Macroeconomic Theory II
Problem on money demand and consumption
Suppose an economy's representative household is infinitely-lived and acts to maximize a utility function subject to no uncertainty - future values of variables are known with certainty. Felicity is increasing in consumption C_{t}, decreasing in the quantity of labor supplied L_{t}, and increasing in holdings of real money balance M_{t} / P_{t}, as follows:

$$
\begin{aligned}
& U=\sum_{t=0}^{\infty} \beta^{t}\left(\ln \left(C_{t}\right)-\frac{1}{2} \theta L_{t}^{2}+\frac{1}{1-\sigma}\left(M_{t} / P_{t}\right)^{1-\sigma}\right) \quad \text { where } \quad 0<\beta<1 \\
& \text { subject to } Z_{t+1}=\frac{P_{t}}{P_{t+1}}\left[\frac{M_{t}}{P_{t}}+\left(1+i_{t}\right)\left(Z_{t}-\frac{M_{t}}{P_{t}}\right)+W_{t} L_{t}-C_{t}\right]
\end{aligned}
$$

where Z_{t+1} is real wealth entering period $(t+1), M_{t}$ is the nominal money balance held across period t, i_{t} is the nominal interest rate paid on nonmoney assets held across period t, and W_{t} is the real wage. At time t, the household takes Z_{t} as given and chooses consumption, labor supply, and real money balances to maximize this lifetime utility function.
a) Write down the value function for the household's problem. Hint: Z is a state variable.
b) Derive the quantity of real money balance M_{t} / P_{t} that a household will choose to hold, as a function of consumption C_{t} and the nominal interest rate i_{t}.

$$
\begin{aligned}
\frac{\partial V}{\partial C_{t}} & =\frac{1}{C_{t}}+\beta V_{z}() \frac{P_{t}}{P_{t+1}}(-1) \\
& \Rightarrow \frac{1}{C_{t}}=\beta V_{z}()_{t / P_{t+1}}^{P_{t}} \\
\frac{\partial V}{\partial\left(M / P_{t}\right.} & =(M / P)_{t}^{-\sigma}+\beta V_{z}\left(\partial \frac{P_{t}}{P_{t+1}}\left(1-\left(1+i_{t}\right)\right)\right. \\
& =\left(\frac{1}{i_{t}}\right)\left(\frac{M}{P}\right)_{t}^{-\sigma}=\beta V_{z}(1) P_{t / P_{t+1}}^{C} \\
& =\frac{1}{C_{t}}\left(\frac{M}{P}\right)_{t} \\
& =\left(\frac{M}{P}\right)_{t}=\left(\frac{C_{t}}{i_{t}}\right)
\end{aligned}
$$

c) Derive C_{t} as a function of C_{t+1}, i_{t+1} and $\frac{P_{t}}{P_{t+1}}$

$$
\begin{aligned}
& \frac{1}{C_{t}}=\beta V_{z}() P_{t} / P_{t+1} \\
& B J \text { condition (envel/y theorem) says } \\
& V_{: z}()=\frac{\partial U^{2}}{\partial C_{t}} \cdot \frac{\partial C_{t}}{\partial Z} \text { holding fixed }(M / P)_{t,} L_{t}, Z_{t+1}
\end{aligned}
$$

Look at londget constraint holding fixed Z_{t+1} etc.,

$$
\frac{\partial c_{t}}{\partial z_{t}}=(1+;)
$$

here. $V_{z}()=\frac{1}{c_{t}}\left(1+i_{t}\right)$

$$
\text { In period t+1, } V_{z}()=\frac{1}{c_{t+1}}\left(1+i_{t+1}\right)
$$

so

$$
\frac{1}{c_{t}}=\beta \frac{1}{c_{t+1}}\left(1+i_{t}\right) \frac{p_{t}}{P_{t+1}}
$$

$$
\Rightarrow C_{t}=\frac{1}{\beta} C_{f+1} \frac{1}{1+i_{t+1}} \underbrace{p_{t+1}}_{p_{t+1}}
$$

d) If the inflation rate is denoted π, then $P_{t+1}=(1+\pi) P_{t}$.

As long as i and π are realistically small (e.g. no more than 5 percent or 0.05), $1+r \approx \frac{1+i}{1+\pi}$ Using this notation rewrite your answer to c) in terms of C_{t+1}^{\prime} and the real interest rate r.

$$
\text { From a have, } P_{t+1} / P_{+}=1+\pi
$$

$\therefore c_{+}=\frac{1}{\beta} c_{t+1} \frac{1+\pi_{t+1}}{1+i_{t+1}}=\frac{1}{\beta} c_{t+1} \frac{1}{1+r_{t+1}}$

