KEYNEJIAN DSGE
NE (S/LM
No persistence, monetory policy loss function
C.B. sets
$$v_{\pm}$$
 to minimize
 $L = E \left[\frac{1}{2} (\pi - \pi^{*})^{2} + \frac{1}{2} (y - y^{*})^{2} \right]$
given info available to C.B.
Josimplify, we'll say $\pi^{*} = 0$ desired π
To simplify, we'll say $\pi^{*} = 0$ desired π
If $y^{*} > 0$, C.B. is mining to keep ortpot above
natural rate.
If $y^{*} = 0$, ----
Recent that in microseconomic model ve used
to derive these equations, natural rate is
too low date to moneyoly - higher y world
boost utility of representative agent,
So $y^{*} > 0$ makes sense.
We'll consider various cases.

辨

KEYNEJIAN DSGE

 $\left[2\right]$

KEYNESIAN DJGE

1) cont, 15 Result: Yt = Et $\pi_{t} = K \varepsilon_{t}^{1s} + \varepsilon_{t}^{\pi}$ Check: is $E_{t}[Y_{t+1}] = E_{t}[x_{t+1}] = 0?$ Yes! Regress IT on YIB = K (Et is residual) Regress y in vicanitis to variation in V. What if you regress y on real interest rates rather than real interest rate minns natural rate? As natural rate varies, real rate does too, so you can dry this. And coefficient is zero, 5x is coefficient from regression of T on rerl interest rate.

KEYNESIAN DJEE

2) $y^* = 0, C. B.$ can see E_t 's when it sets V_t $\operatorname{Min} \frac{1}{2} \left(- s \kappa v_{t} + \kappa \varepsilon_{t}^{1} + \varepsilon_{t}^{T} \right) + \frac{1}{2} \left(- s r_{t} + \varepsilon_{t}^{1} \right)^{2}$ $F. o. C, \frac{\partial L}{\partial r} = 0 \longrightarrow r_{t}^{*} = \frac{1}{5} E_{t}^{15} + \frac{k}{s(1+k^{2})} E_{t}^{T}$ V1 Resulting $Y_{\pm} = -sv_{\pm}^{*} + \varepsilon_{\pm}^{'I} = -\frac{k}{1+k^2}\varepsilon_{\pm}^{*}$ $\pi_{+} = K \gamma_{+} + E_{+}^{\pi} = \frac{1}{1 + K^{2}} E_{\perp}^{\pi}$ What's going in here? C. B. is adjusting r to totally counternet - 15 IJ shocks because this keeps hith thy et Ò Jesired Levels, C.B. is only partly connterrating effect of E, because here it must trade off stabilizing T against Jestabslizing Y.

$$\frac{DYNAMIC [NCONSISTENCY of LOV-INFLATION]}{MONETARY POLICY (SEC also Homer 11, 7)}$$

$$Y_{t} = \frac{1}{T_{t+1}} (Y_{t+1}) (Y_{t+1$$

$$\frac{DYNAMIC}{(LA CONSISTENCY (c.n.t.))}$$

$$\frac{Centrel bank uses public's lass function
$$\frac{e}{r_{tu}} = \pi = 0 \text{ not a rational expectations equilibriums}$$
Assume $Y^{E} = 0$, $\pi^{E} = 0$
See that c. b. wont choose v to make $\pi = \pi^{E}$
Hence not equilibrium
 $L = \frac{1}{2} \pi_{t}^{2} + \frac{1}{2} a(\gamma_{t} - \gamma^{*})^{2}$
For $\pi^{E} = 0$, $\gamma^{E} = 0$
 $L = \frac{1}{2} (-\pi s v_{t})^{2} + \frac{1}{2} a(-s v_{t} - \gamma^{*})^{2}$
We confid calculate $\frac{1}{5} v_{t}$, $\frac{1}{5} a(v_{t} - s v_{t} - \gamma^{*})^{2}$
 $L = \frac{1}{2} (\pi s v_{t})^{2} + \frac{1}{2} a(-s v_{t} - \gamma^{*})^{2}$
Not a short extraction
 γ^{*} inte PC d (J.
But a short extraction
 $\gamma^{*} = \frac{1}{2} (\kappa \gamma)^{2} + \frac{1}{2} a(\gamma - \gamma^{*})^{2}$
 $Calculate $\frac{3L}{3\gamma}$, $rolve$ for Y. C. B. chose v_{t} to
hit this Y. Results
 $\gamma = \frac{a}{a+k^{2}} \gamma^{*}$ $\pi = \kappa \frac{a}{a+k^{2}} \gamma^{*}$
Not an equilibrium!$$$

the hyper is instance (if convse), but output isn't any higher (if convse),

$$\frac{\partial YNAMIC | N i dNSISTENCY}{Conservative central Lanter}$$
Say a in central bank's loss fri is a can
then actume is

$$\pi = \frac{a}{k} Y^{*} , Y = 0$$
This of Getter for Ynb Lici
Loss with normal central banker:

$$L = \frac{1}{k} \left(\frac{a}{k} y^{*}\right) + \frac{1}{2} a(y^{*})^{2}$$
Loss with conservative central banker:

$$L = \frac{1}{k} \left(\frac{a}{k} y^{*}\right)^{2} + \frac{1}{2} a(y^{*})^{2}$$

$$\frac{As if'' central backer}{Result will be } \pi = 0, Y = 0$$

$$L = \frac{1}{k} (0)^{2} + \frac{1}{2} a(y^{*})^{2}$$

~

•

•

•

(addan of address states a density at the second second

"Inderest rate rules" (e.g. r(T, y)) at First viewed this wry.