MALTHUS' MODEL ("MALTHUSIAN GROWTH")

Production

$$Y_{t} = A_{t}F(L_{t}) F'(L_{t}) > 0 F''(L_{t}) < 0$$

Story behind production function

Constant returns to scale but fixed factor: land

$$\frac{\partial Y}{\partial L} = A F'(L_{t}) = (BLand^{\alpha})(1-\alpha)L^{-\alpha} > 0$$

$$\frac{\partial^{2}Y}{\partial L^{2}} = A F''(L_{t}) = (BLand^{\alpha})(1-\alpha)(-\alpha)L^{-(\alpha+1)} < 0$$

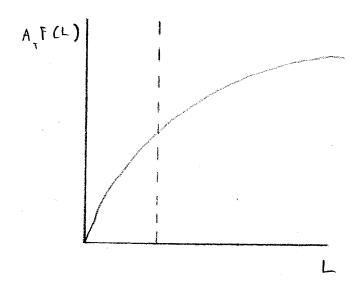
Population Gronth

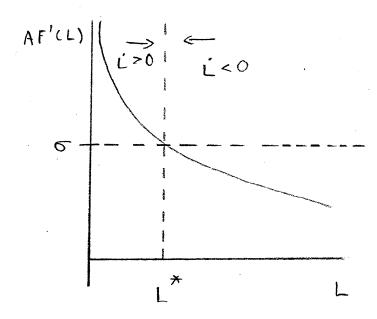
$$n_{t} = G(A_{t}F'(L_{t}) - \sigma)$$
 $G'(\cdot) > 0$
 $G(0) = 0$
 $A_{t}F'(L_{t}) - \sigma = 0$
 $G'(\cdot) > 0$
 $G(0) = 0$

hence

Malthus Model

Graphical Representation of equilibrium





AF'(L*) =
$$\sigma$$

Example:

Y = A L

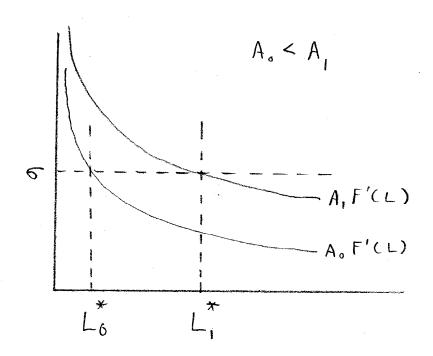
Equilibrium

A(1- α) L* = σ

$$L^* = (1-\alpha)^k \sigma^s$$
 σ^s , in \log^s ,

 σ^s = σ^s

Effect of DA:



Implications:

-At does not improve welfare, except in short rnn ("Dismal Science")

- In the long run, population growth is proportional to

technological improvement.

Taking above example, & assuming Ly = Ly,

Birth rates & death rades

Birth rate
$$b = k, + \gamma W$$

Death rate $d = k_2 - \gamma W$

$$G = \frac{K_2 - K_1}{\gamma + \gamma}$$

Medical improvement: Kzl, ol