Malthus' model ("malthusiangrowtn")
Production

$$
Y_{t}=A_{t} F\left(L_{t}\right) \quad F^{\prime}\left(L_{t}\right)>0 \quad F^{\prime \prime}\left(L_{t}\right)<0
$$

Story behind production function
Constant returns to scale but fixed factor: land
Example: Cobb-Douglas

$$
\begin{aligned}
& \text { Example: Cobb-Donglas } \\
& Y=B \operatorname{Land}^{\alpha} L^{1-\alpha}<\left(B(c \operatorname{Land})^{\alpha}(c L)^{1-\alpha}=c B \operatorname{Land}^{\alpha} L^{1-\alpha}\right. \\
& \text { Fix land: } Y=\underbrace{\left(B \operatorname{Land}^{\alpha}\right)}_{A} L^{1-\alpha} \\
& \frac{\partial y}{\partial L}=A F^{\prime}\left(L_{f}\right)=\left(B \operatorname{Land}^{\alpha}\right)(1-\alpha) L^{-\alpha}>0 \\
& \frac{\partial^{2 y}}{\partial L^{2}}=A F^{\prime \prime}\left(L_{f}\right)=\left(B \operatorname{Land}^{\alpha}\right)(1-\alpha)(-\alpha) L^{-(\alpha+1)}<0
\end{aligned}
$$

Population Growth
n_{t} Population growth rate $\dot{L}_{t}=n L_{t}$
σ "Subsistence" Consumption Level

$$
n_{t}=\underbrace{A_{t}\left(L_{t}\right)}_{\begin{array}{c}
M P L \\
M_{t} \\
M_{t} G^{\prime}
\end{array}}-\sigma) \quad G^{\prime}(1)>0 G(0)=0
$$

hence

$$
\begin{aligned}
& \dot{L}_{t}=L_{t} \sigma\left(A_{t} F^{\prime}\left(L_{t}\right)-\sigma\right) \\
& \dot{L}_{t} \geqslant 人 \quad A_{t} F^{\prime}\left(L_{t}\right) \geqslant \sigma
\end{aligned}
$$

Malthus' Model
Graphical Representation of equilibrium

$$
A F^{\prime}\left(L^{*}\right)=\sigma
$$

Example:

$$
\begin{aligned}
& Y=A L^{1-\alpha} \\
& E q u i l i b r i n m \\
& A(1-\alpha) L^{*-\alpha}=\sigma \\
& \Rightarrow L^{*}=(1-\alpha)^{1 / \alpha} \sigma^{-\frac{1}{\alpha}} A A^{\frac{1}{\alpha}} \\
& o n, \text { in logs } \\
& Z^{*}=\text { Constant }+\frac{1}{\alpha} a
\end{aligned}
$$

Malthus Model
Effect of $\triangle A$:

Implications:

- A个 does not improve welfare, except in shorten (Dismal Science")
- In the long ran, populationgrouth is proportional to technologies improvement.

Taking above example, \& assuming $L_{t}=L_{t}^{*}$,

$$
i=1 / \alpha \dot{a}
$$

Malthus' Model
Birth rates $\&$ death rads
Birth rate $l_{s}=k,+y \mathrm{~W}$
Death rate $d=k_{2}-\eta W$
What is σ ? When $w=\sigma, u=0$

$$
\sigma=\frac{k_{2}-k_{1}}{\gamma+\eta}
$$

Medical improvement: $k_{2} \downarrow, \sigma \downarrow$

