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ABSTRACT 

This paper presents two nonlinear feature dimensionality 
reduction methods based on neural networks for a HMM-
based phone recognition system. The neural networks are 
trained as feature classifiers to reduce feature 
dimensionality as well as maximize discrimination among 
speech features. The outputs of different network layers are 
used for obtaining transformed features. Moreover, the 
training of the neural networks uses the category 
information that corresponds to a state in HMMs so that the 
trained networks can better accommodate the temporal 
variability of features and obtain more highly discriminative 
features in a low dimensional space. Experimental 
evaluation using the TIMIT database shows that recognition 
accuracies with the transformed features are slightly higher 
than those obtained with original features and considerably 
higher than obtained with linear dimensionality reduction 
methods. The highest phone accuracy obtained with 39 
phone classes and TIMIT was 74.9% using a large number 
of training iterations based on the state-specific targets.  
 

Index Terms— nonlinear discriminant analysis, neural 
networks, dimensionality reduction, HMMs  
 

1. INTRODUCTION 

Over the past two decades, there has been a lot of 
research effort devoted to combining HMMs and Neural 
Networks (NN) with a single, hybrid architecture, called 
hybrid NN/HMM speech recognition [1]. These hybrid 
systems attempt to take advantage of both HMMs and 
neural networks to improve flexibility and recognition 
performance. For instance, the hybrid system proposed by 
Bourlard and Morgan [2] applied a neural network to 
estimate the posterior probabilities of HMM states. 
Recently, the so-called TANDEM recognition approach 
introduced by Hermansky et al. [3] has shown a large 
improvement in recognition performance. This approach 
with neural networks and HMMs connected in tandem uses 
neural networks to obtain discriminative features as the 
input features for Gaussian Mixture Models (GMMs) of 
HMMs. 

In this paper, we focus on the dimensionality reduction 
ability of neural networks and propose two neural network 

based NonLinear Discriminative Analysis (NLDA) 
transformations for a HMM-based phone recognition 
system. In contrast to many linear dimensionality reduction 
techniques including Principal Components Analysis (PCA) 
and Linear Discriminant Analysis (LDA), neural network 
based nonlinear transformation methods are able to form a 
dimensionally-reduced representation for complex data, 
while preserving variability and discriminability of the 
original data [4]. The outputs from different layers of a 
neural network are used as dimensionality reduced features 
for HMMs. In the first approach, which we refer to as 
NLDA1, the transformed features are produced from the 
final output layer of the network. In the second approach 
named NLDA2, the outputs of the middle hidden layer are 
used as transformed features. In addition, with the training 
independent of the HMM training, the neural network based 
feature transformations described in this paper could easily 
be combined with other processing methods. 

The remainder of this paper is organized as follows: In 
Section 2, we describe the NLDA dimensionality reduction 
methods. Section 3 summarizes the evaluation of the 
proposed approaches using the TIMIT database with 
various neural network and HMM configurations. The 
conclusion is given in Section 4. 

 
2. NLDA DIMENSIONALITY REDUCTION 

2.1. NLDA methods 

As illustrated in Fig. 1, the NLDA dimensionality reduction 
approach is based on a multilayer neural network and 
performs a nonlinear transformation for a lower dimensional 
representation of input features. The outputs of the network 
are further processed by PCA to create transformed features 
to be the inputs of an HMM recognizer. 

The neural network used in NLDA includes an input 
layer, hidden layers and an output layer. The numbers of 
nodes contained in the input and output layers respectively 
correspond to the dimensions of the input features and the 
number of categories in the training target data. 

NLDA1 obtains dimensionality reduced features at the 
output layer of a neural network. A linear output layer is 
used for the feature transformation in order to obtain output 
features which can be better modeled by HMMs, although 
all sigmoid nonlinear layers are used for the NLDA1 
training. 



 
Fig. 1. Overview of the NLDA transformation for speech recognition 

In contrast, NLDA2 uses the outputs of the middle 
hidden layer since the activations of the middle layer 
represent the internal structure of the input features. The 
dimensionality of the reduced feature space is determined 
only by the number of nodes in the middle layer. Therefore, 
an arbitrary number of reduced dimensions can be obtained, 
independent of the input feature dimensions and the nature 
of the training targets. Unlike NLDA1, all layers including 
the middle hidden layer are nonlinear in both feature 
transformation and training.  

A PCA processing is applied to the output of the neural 
network as was used in [3]. PCA performs a Karhunen-
Loeve (KL) transform in order to reduce the correlation of 
the network outputs and improve their match to a GMM. 
Since PCA itself is a good dimensionality reduction method, 
the dimension of the network outputs in NLDA1 is further 
reduced using PCA, while the PCA processing in NLDA2 is 
only used for feature decorrelation. 

The transformed features are used as the inputs to a 
HMM with each state modeled as a GMM. Phoneme HMMs 
are used in this paper for phonetic recognition experiments. 

 
2.3. Network training with state specific targets 

The original features are scaled using the mean and standard 
deviation vectors of the training data so that all components 
have the same mean and variance as described in [5]. 

The training of the neural network requires the category 
information for creating training targets. In this paper, as a 
baseline, we use a number of output nodes equal to the 
number of phone categories, with a value of 1 for the target 
category and 0 for the non-target categories. The phone 
labeling information is the same as that used for the HMM 
training, thus 48 phone categories are used for the network 
training. 

Due to the nonstationarity of speech signals, a speech 
signal varies even in a very short time interval, e.g. a 
phoneme. In order to accommodate this variability, multiple 
neural networks are employed in [6] and each corresponds 
to a state in a HMM. In contrast, in this paper a single 
neural network is trained using some “don’t care” states for 
each phoneme model, so that one neural network trained 
with the targets can generate state dependent outputs.  

As illustrated in Fig. 2, the phone-specific training target 
for a phone “∆” in a simple two-phone example is expanded 
to include specific targets for each of the 3 states.  In the 
training process, for each point in time, one state target will 
be considered as a “1,” and the other two state targets for 
that point in time will be considered as a “don’t care,” and 
the state targets for all other categories will be consider as 
“0” value targets. As time progresses during a phone, the 
“1” moves from state 1 to state 2, to state 3. For the actual 
work reported in this paper, 48 phonemes were modeled 
with 3 state models, thus resulting in a neural network 
trained with 144 outputs rather than 48. 

 
Fig. 2. State level training targets 

This strategy was based on the thinking that the features 
transformed by the neural network should be distinctive for 
each phoneme state, but the boundaries between states are 
likely to be indistinct. Thus “don’t cares” are used in 
training so that there are no errors computed for the “don’t” 
cares output nodes.  

Two approaches are used to expand a phoneme level 
label to a state level label. The first approach uses a fixed 
state length ratio for all phonemes —assuming the first part 
of each phone is state 1, central section state 2, and last part 
state 3. The second one determines state boundaries by 
using the HMM-based Viterbi alignment, using an already 
trained HMM. The latter approach also provides global 
training between HMMs and neural networks by iteratively 
training the two components. For instance, a neural network 
is first trained with a fixed state length targets, then HMMs 
are trained, and then alignment based targets are used to 
train the neural networks. The HMM training and neural 
network training steps are iterated until some point of 
convergence is reached.  



3. EXPERIMENTAL EVALUATION 

3.1. Experimental setup 

Several experiments based on the TIMIT database were 
conducted to investigate the two NLDA methods. The SA 
sentences were removed from the database, resulting in 
3696 sentences for training and 1344 sentences for test. The 
original TIMIT 62 phone set was mapped to the reduced 48 
phone set as described in [7]. There are seven groups where 
within-group confusions are not counted: {sil, cl, vcl, epi}, 
{el, l}, {en, n}, {sh, zh}, {ao, aa}, {ih, ix}, {ah, ax}. Thus, 
a total of 39 phone classes were used for the evaluation.  

For all data, the modified Discrete Cosine 
Transformation Coefficients (DCTCs) and Discrete Cosine 
Series Coefficients (DCSCs) [8] were extracted as original 
features. DCTCs are used for representing speech spectra, 
and DCSCs are used to represent spectral trajectories. For 
all experiments, 13 DCTCs and 6 DCSCs were computed 
using 10 ms frames with a 2 ms frame spacing and a 1s 
block length, for a total of 78 DCTC-DCSC features.  

Left-to-right Markov models with no skip were used and 
a total of 48 monophone HMMs were created from the 
training data using the HTK toolbox (Ver3.4). The bigram 
phone information extracted from the training data was used 
as the language model.  

A neural network with 3 hidden-layers (500-36-500 
nodes) was used for determining feature transformations. 
The numbers of nodes in the input layer was 78 
corresponding to the dimensionality of the original features. 
The output layer used 48 nodes for the phoneme level 
targets or 144 nodes for the state level targets.  

 
3.2. Control experiment 

The intent of this experiment was to establish a baseline for 
the evaluation of the proposed methods using the original 
DCTC-DSCS features as well as the PCA and LDA 
dimensionality reduced features. The original features were 
reduced to 20 and 36 dimensions both by PCA and LDA.  
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Fig. 3. Recognition accuracies using the original, PCA, and 
LDA features. 

Fig. 3 shows recognition accuracies of the original and 
the reduced features using various numbers of mixtures in 
3-state HMMs. The original features show the highest 
accuracy of 73.2% using 64-mixture HMMs. In all cases, 
the dimensionality reduced features lead to a degradation in 
accuracy. Compared to the original features, the PCA 36-
dimensional features result in approximately 2% lower 
accuracy with 64 mixtures and 1% lower with 3 mixtures. 

 
3.3. NLDA1 and NLDA2 experiments  

Experiments were conducted to evaluate NLDA1 and 
NLDA2 using 36-dimensional reduced features. The 
number 36 was chosen based on pilot experiments, showing 
that typically highest accuracy was obtained with this 
number of features. The 48 phoneme level targets were used 
in the training of the network. The features which are direct 
outputs of the network without PCA processing were also 
evaluated.  
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Fig. 4. Recognition accuracies using the NLDA 
dimensionality reduced features (“NLDA1” and “NLDA2”) 
and the features without the PCA processing (“NLDA1 w/o 
PCA” and “NLDA2 w/o PCA”).   

Fig. 4 shows accuracies using 3-state HMMs with 
varying number of mixtures per state. NLDA2 performed 
better than NLDA1 for all conditions with about 2% higher 
accuracy. The NLDA2 transformed features resulted in the 
highest accuracy of 73.4% with 64 mixtures, which is 
slightly higher than the original features and considerably 
higher than the PCA and LDA features reported in Fig 3.  

These results imply that the middle layer outputs of a 
neural network are able to better represent original features 
in a dimensionality-reduced space than are the outputs of 
the final output layer. The accuracies were also improved 
about 2% with PCA incorporated. 

 
3.4. Experiments with state specific training targets 

The NLDA methods trained with the state level targets were 
evaluated in this experiment. The network had 144 output 
nodes instead of 48 nodes used in 3.3 and was trained with a 
large number of iterations (4x107 weight updates).  



65

67

69

71

73

75

3 8 16 32 64

Ac
cu
ra
cy
 [
%
]

Number of Mixtures

NLDA1 (R)
NLDA1 (A)
NLDA2 (R)
NLDA2 (A)

 

Fig. 5. Recognition accuracies of the NLDA dimensionality 
reduced features using the state level targets. “(R)” and 
“(A)” indicate the training targets obtained with the constant 
length ratio and forced alignment respectively.  

Recognition accuracies of reduced 36-dimensional 
features using a constant state length ratio (ratio for 3 states: 
1:4:1) and the Viterbi forced alignment for expanding the 
targets are shown in Fig. 5.   

Both NLDA1 and NLDA2 using the expanded targets 
lead to approximate 2% higher in accuracy than using the 
phoneme level targets reported in Fig. 4. The use of forced 
alignment for state boundaries resulted in the highest 
accuracy of 74.9% with 64 mixtures, but slightly lower 
accuracies than using a fixed ratio of state lengths at the 
other conditions.  

Comparing these results with those from Fig. 3, the 
NLDA2 features in a reduced 36-dimensional space 
achieved a substantial improvement versus the original 
features, especially when a small number of mixtures used. 
These results show the NLDA methods based on the state 
level training targets are able to obtain highly discriminative 
features in a dimensionality reduced space.   

   
4. LITERATURE COMPARISON 

Table 1 lists some recognition accuracies based on the 
TIMIT database as reported in the literature. The best result 
obtained in this paper is higher than all others, except for 
that of the Tandem NN [12] in which multiple neural 
networks and higher dimensional features were used.   

Table 1.  TIMIT results reported in literature 

Study Feature Recognizer Acc. (%) 
Somervuo [9] MFCC HMM 68.5 
Ketabdar et al. [10] PLP MLP-HMM 71.5 
Pinto et al.  [11]  LPC HMM-MLP 74.6 
Schwarz et al. [12] MFCC Tandem NN 78.5 
Zahorian et al. [8] DCTC/DCSC HMM 73.9 
This study DCTC/DCSC NN-HMM 74.9 
 

5. CONCLUSIONS 

Two feature dimensionality reduction methods based on 
neural networks were presented in this paper. In order to 
train neural networks with state dependent targets, “don’t 
cares” are used where boundaries are not likely to be 
distinct, e.g., between states within a phone.  

Experimental evaluation using TIMIT showed that very 
high recognition accuracies with the NLDA dimensionality 
reduced features were obtained, especially when using the 
outputs of network middle layer as in NLDA2. Recognition 
accuracies were improved using the state specific targets 
and a large number of iterations in the network training. The 
highest accuracy of 74.9% was obtained with the NLDA2 
features using 3-state HMMs with 64 mixtures per state. 
These results showed that the presented methods are able to 
produce a low-dimensional effective representation of 
speech features, thus improving the performance of 
continuous speech recognition using HMMs. 
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