Econ 466

Homework Assignment #2, Due: February 16.

1. Problem 2.8 from Introductory Econometrics by Jeffrey Wooldridge.

- 2. Let $\hat{\beta}_{YX}$ and $\hat{\beta}_{XY}$ represent the slopes in the regression of Y on X $(Y = \beta_0 + \beta_{YX} X + u)$ and X on Y $(X = \alpha_0 + \beta_{XY} Y + v)$, respectively. Show that $\hat{\beta}_{YX}\hat{\beta}_{XY} = r^2$ (see the formula for r in problem number 5 below).
- 3. Consider the following formulation of the two-variable regression:

Model I: $Y_i = \beta_1 + \beta_2 X_i + u_i$ Model II: $Y_i = \alpha_1 + \alpha_2 (X_i - \overline{X}) + u_i$

- a) Find the estimators of β_1 and α_1 . Are they identical? Are there variances identical?
- b) Find the estimators of β_2 and α_2 . Are they identical? Are there variances identical?
- c) What is the advantage, if any, of model II over model I?
- 4. Regression without any Regressor. Suppose you are given the model: $Y_i = \beta_1 + u_i$. Use OLS to find the estimator of β_1 . What is its variance and the RSS (residual sum of squares)? Does the estimated β_1 make intuitive sense? Now consider the standard two-variable model we have been discussing in class. Is it worth adding the X variable to the model? If not, why bother with regression analysis?
- 5. Let r_1 be the coefficient of correlation between n pairs of values (Y_i, X_i) and r_2 be the coefficient of correlation between n pairs of values $(aY_i + b, cX_i + d)$ where a, b, c, and d are constants. Show that $r_1 = r_2$ and hence establish the principle that the coefficient of correlation is invariant with respect to the change of scale and the change of origin. **Hint:**

$$r = \frac{n\sum X_i Y_i - (\sum X_i)(\sum Y_i)}{\sqrt{\left[n\sum X_i^2 - (\sum X_i)^2\right]} \left[n\sum Y_i^2 - (\sum Y_i)^2\right]}$$

- 6. If r, the coefficient of correlation between n pairs of values (X_i, Y_i) , is positive, then determine whether each of the following statements is true of false:
 - a. r between $(-X_i, -Y_i)$ is also positive.
 - b. r between $(-X_i, Y_i)$ and that between $(X_i, -Y_i)$ can be either positive or negative.
 - c. Both the slope coefficients β_{XY} and β_{YX} are positive where the definitions of the slope coefficients follow from 2. above.