Econ 466

Homework Assignment \#2,
Due: February 16.

1. Problem 2.8 from Introductory Econometrics by Jeffrey Wooldridge.
2. Let $\hat{\beta}_{Y X}$ and $\hat{\beta}_{X Y}$ represent the slopes in the regression of Y on X $\left(Y=\beta_{0}+\beta_{Y X} X+u\right)$ and X on $\mathrm{Y}\left(X=\alpha_{0}+\beta_{X Y} Y+v\right)$, respectively. Show that $\hat{\beta}_{Y X} \hat{\beta}_{X Y}=r^{2}$ (see the formula for r in problem number 5 below).
3. Consider the following formulation of the two-variable regression:

$$
\begin{array}{ll}
\text { Model I: } & Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i} \\
\text { Model II: } & Y_{i}=\alpha_{1}+\alpha_{2}\left(X_{i}-\bar{X}\right)+u_{i}
\end{array}
$$

a) Find the estimators of β_{1} and α_{1}. Are they identical? Are there variances identical?
b) Find the estimators of β_{2} and α_{2}. Are they identical? Are there variances identical?
c) What is the advantage, if any, of model II over model I?
4. Regression without any Regressor. Suppose you are given the model: $Y_{i}=\beta_{1}+u_{i}$. Use OLS to find the estimator of β_{1}. What is its variance and the RSS (residual sum of squares)? Does the estimated β_{1} make intuitive sense? Now consider the standard two-variable model we have been discussing in class. Is it worth adding the X variable to the model? If not, why bother with regression analysis?
5. Let r_{1} be the coefficient of correlation between n pairs of values $\left(Y_{i}, X_{i}\right)$ and r_{2} be the coefficient of correlation between n pairs of values $\left(a Y_{i}+b, c X_{i}+d\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are constants. Show that $r_{1}=r_{2}$ and hence establish the principle that the coefficient of correlation is invariant with respect to the change of scale and the change of origin. Hint:

$$
r=\frac{n \sum X_{i} Y_{i}-\left(\sum X_{i}\right)\left(\sum Y_{i}\right)}{\sqrt{\left[n \sum X_{i}^{2}-\left(\sum X_{i}\right)^{2}\left[n \sum Y_{i}^{2}-\left(\sum Y_{i}\right)^{2}\right]\right.}}
$$

6. If r , the coefficient of correlation between n pairs of values $\left(X_{i}, Y_{i}\right)$, is positive, then determine whether each of the following statements is true of false:
a. r between $\left(-X_{i},-Y_{i}\right)$ is also positive.
b. r between $\left(-X_{i}, Y_{i}\right)$ and that between $\left(X_{i},-Y_{i}\right)$ can be either positive or negative.
c. Both the slope coefficients $\beta_{X Y}$ and $\beta_{Y X}$ are positive where the definitions of the slope coefficients follow from 2. above.
