Econ 466, Fall 2003 Midterm Examination 2 *Total: 100 points* Time: 1 hour and 15 minutes

Note: Answer all questions. Write clearly and legibly. Good Luck!!

F values at the 5% level: F(3,40) = 2.8387; F(2,40) = 3.2317; F(3,27) = 3.3541

1. A labor economist estimated the following model

$$\ln W = \beta_0 + \beta_1 S + \beta_2 N + \beta_3 N^2 + u \,.$$

Using 44 observations she obtained the estimated regression function

$$\ln \hat{W} = 7.71 + 0.094 \, S + 0.023 \, N - 0.000325 \, N^2 \,, \ R^2 = 0.337$$

(0.113) (0.005) (0.009) (0.000187)

where $\ln \hat{W}$ = the natural log of earnings, S = years of schooling, and N = years of experience. Standard errors are in parentheses.

- (i) Test the hypothesis (state the null and alternative hypotheses) that schooling has no effect on earnings. (6 points)
- (ii) Test the hypothesis (state the null and alternative hypotheses) that neither schooling nor experience has any effect on earnings. (8 points)
- (iii) Describe how you would test the hypothesis that experience has no effect on earnings. (8 points)
- (iv) Derive the expressions for the elasticity of earnings with respect to schooling and experience. What additional information, if any, do you need to compute these elasticities? (10 points)
- (v) To predict $\ln W$ and $E(\ln W)$ when S = 10 and N = 10, she ran the above regression slightly differently, and obtained the following result.

$$\ln \hat{W} = 8.8475 + 0.094(S - 10) + 0.023(N - 10) - 0.000325(N - 10)^2, R^2 = 0.337$$

(0.436) (0.005) (0.009) (0.000187)

Predict lnW and $E(\ln W)$ when S = 10 and N = 10. Also compute the standard errors of these predicted values. (10 points)

2. Using data on 34 observations, the following model (Model A) was estimated.

$$\ln Y = \beta_0 + \beta_1 \ln X_1 + \beta_2 X_3 + u,$$

where Y = per-capita new car sales, $X_1 =$ new car price, $X_2 =$ per-capita income, $X_3 =$ interest rate. In addition, two other models are estimated using season dummies (that take a value of 1 in the corresponding quarter and 0 otherwise). The regression results for these 3 models are reported in the following table.

	Model A		Model B		Model C	
Variable	Coeff	Std.err.	Coeff	Std.err.	Coeff	Std.err.
Intercept	-31.85	6.12	-33.35	5.92	-32.58	5.89
lnX_1	-1.75	0.24	-1.25	0.021	-1.76	0.017
lnX ₂	4.73	1.04	4.93	0.981	4.81	0.871
X3	-0.29	.052	-0.27	0.049	-0.19	0.056
Spring			0.092	0.043	0.125	0.034
Summer			-0.051	.0048		
Fall			-0.049	0.029		
\mathbb{R}^2	.748		.834		.818	
\overline{R}^2						

- (a) Interpret the coefficients of $\ln X_1$, $\ln X_2$, X_3 in Model A. (9 points)
- (b) Interpret the coefficients of Spring, Summer and Fall dummies in Model B. (12 points)
- (c) Interpret the coefficients of the Spring dummy in Model C. (4 points)
- (d) Compute \overline{R}^2 for Models A, B and C. (9 points)
- (e) Which model would you choose as the best model and why? (4 points)
- (f) You want to test the hypothesis that there are no seasonal differences in sales. How would you test such a hypothesis, given the information in the above table? Explain. (8 points)
- (g) You want to test whether price elasticity (β_1) is different across seasons. Starting from **Model B**, write down another model that will enable you to test for this. Write down the null and alternative hypotheses and describe the testing procedure step by step. (12 points)