ECON 466 MIDTERM I ANSWER KEY

LIANG LIU

Question 1.

1. (a) Compute the t -values in the 4 th and 8 th columns of the above table.

Regressor	t	Regressor	t
comp	5	$\ln ($ comp $)$	5.253
staff	1.204	staff	1.131
enroll	-1	$\ln ($ enroll $)$	-1.793
intercept	0.372	intercept	-4.718

1. (b) In Model 1 interpret the coefficients of comp, staff, and enroll in simple words. (Note: if the passing rate is 40%, then math $10=40$, instead of 0.04 .)

When comp increases by $\$ 1$, predicted value of math 10 increases by 0.0005 percentage points.

When number of staff increases by one, predicted value of math10 increases by 0.0479 percentage points.

When student enrollment (enroll) increases by one predicted value of math10 decreases by 0.0002 percentage points.

1. (c) In Model 2 interpret the coefficients of \ln (comp) and \ln (enroll) in simple words.

When comp increases by 1%, predicted value of math10 increases by 0.21173 percentage points.

When enroll increases by 1\%, predicted value of math10 decreases by 0.012443 percentage points.

1. (d) How would you test the hypothesis that there is no regression say at the 5% level of significance in Models 1 and 2? Please explain.

Model 1:

$$
\text { math10 }=\beta_{0}+\beta_{1} c o m p+\beta_{2} \text { staff }+\beta_{3} \text { enroll }+u
$$

$H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$
$H_{1}: H_{0}$ is not true.

$$
\begin{aligned}
F & =\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)} \\
& =\frac{(42394+2422-42394) / 3}{(42394) /(100-3-1)} \\
& =1.828
\end{aligned}
$$

Or we could use the R^{2} to find the F statistics,

$$
\begin{aligned}
& R_{u r}^{2}=\frac{S S E}{S S T}
\end{aligned} \begin{aligned}
F & =\frac{2422}{42394+2422}=0.054043 \\
& =\frac{R_{u r}^{2} / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \\
& =\frac{0.054043 / 3}{(1-0.054043) / 96} \\
& =1.828
\end{aligned}
$$

Model 2:

$$
m a t h 10=\gamma_{0}+\gamma_{1} \ln (\text { comp })+\gamma_{2} \text { staff }+\gamma_{3} \ln (\text { enroll })+u
$$

$H_{0}: \gamma_{1}=\gamma_{2}=\gamma_{3}=0$
$H_{1}: H_{0}$ is not true.

$$
\begin{aligned}
F & =\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)} \\
& =\frac{(41853+2964-41853) / 3}{(41853) /(100-3-1)} \\
& =2.266
\end{aligned}
$$

Or we could use the R^{2} to find the F statistics,

$$
\begin{aligned}
& R_{u r}^{2}=\frac{S S E}{S S T}
\end{aligned} \begin{aligned}
F & =\frac{2964}{41853+2964}=0.066136 \\
& =\frac{R_{u r}^{2} / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \\
& =\frac{0.066136 / 3}{(1-0.066136) / 96} \\
& =2.266
\end{aligned}
$$

Then we need to compare the F statics of the models with the critical value ($\mathrm{c}=F_{3,95}$ at 5% significance level). If F is bigger than c , we reject the null; if F is lower than c, we cannot reject the null.

1. (e) If comp in Model 1 is measured in thousand dollars, what would happen to the estimated coefficients in column 2? How about the coefficients in Model 2 (column 6)? Please explain in details.

Model 1:

$$
\widehat{m a t h 10}=\hat{\beta_{0}}+\hat{\beta_{1}} \operatorname{comp}+\hat{\beta_{2}} \text { staff }+\hat{\beta_{3}} \text { enroll }
$$

If comp in Model 1 is measured in thousand dollars, defining comp ${ }^{*}=\frac{c o m p}{1000}$, then $\operatorname{comp}=1000 *$ comp *.

$$
\widehat{m a t h 10}=\hat{\beta_{0}}+\hat{\beta_{1}} \cdot 1000 * \operatorname{comp}^{*}+\hat{\beta_{2}} \text { staff }+\hat{\beta_{3}} \text { enroll }
$$

The estimated coefficients in column 2 are unchanged, except the coefficient of comp $^{*}, \hat{\beta}_{1}^{*}=1000 \hat{\beta_{1}}=1000 \cdot 0.0005=0.5$.

Model 2:

$$
\widehat{m a t h 10}=\hat{\gamma_{0}}+\hat{\gamma_{1}} \ln (\text { comp })+\hat{\gamma_{2}} s t a f f+\hat{\gamma_{3}} \ln (\text { enroll })
$$

If comp in Model 2 is measured in thousand dollars, defining comp ${ }^{*}=\frac{c o m p}{1000}$, then $\operatorname{comp}=1000 *$ comp *.

$$
\begin{aligned}
& \widehat{\text { math } 10}= \hat{\gamma_{0}}+\hat{\gamma_{1}} \ln \left(1000 * \operatorname{comp}^{*}\right)+\hat{\gamma}_{2} \operatorname{staff}+\hat{\gamma}_{3} \ln (\text { enroll }) \\
&=\hat{\gamma_{0}}+\hat{\gamma_{1}} \ln 1000+\hat{\gamma}_{1} \ln \left(\text { comp }^{*}\right)+\hat{\gamma_{2}} \operatorname{staff}+\hat{\gamma_{3}} \ln (\text { enroll }) \\
& 3
\end{aligned}
$$

The estimated coefficients in column 6 are unchanged, except the intercept, $\hat{\gamma}_{0}^{*}=$ $\hat{\gamma_{0}}+\hat{\gamma_{1}} \ln 1000=-194.15+21.173 \cdot 6.91=-47.84457$.

1. (f) If comp in Model 1 is measured in natural logarithm (and everything else remains unchanged), how would you interpret the coefficient on \ln (comp)? Please explain.

When comp increases by 1%, predicted value of math 10 increases by 0.000005 percentage points.

1. (g) How would you predict mean math10 and compute its confidence interval for enroll $=3,000$, staff $=100$, and comp $=45,000$ in Model 1 ? Carefully explain all the steps.

The predicted mean math $10=2.2740+0.0005 \cdot 45,000+0.0479 \cdot 100-0.0002 \cdot 3,000=$ 28.964 .

To construct the confidence interval, we also need the standard error of the predicted value. The procedure is as following:
The parameter we would like to estimate is

$$
\begin{aligned}
\theta_{0} & =\beta_{0}+\beta_{1} \cdot 45000+\beta_{2} \cdot 100+\beta_{3} \cdot 3000 \\
& =E(\text { math } 10 \mid \text { comp }=45000, \text { staff }=100, \text { enroll }=3000)
\end{aligned}
$$

Write $\beta_{0}=\theta_{0}-\beta_{1} \cdot 45000-\beta_{2} \cdot 100-\beta_{3} \cdot 3000$ and plug this into equation

$$
\text { math } 10=\beta_{0}+\beta_{1} \operatorname{comp}+\beta_{2} \text { staff }+\beta_{3} \text { enroll }+u
$$

then

$$
\operatorname{math} 10=\theta_{0}+\beta_{1}(\operatorname{comp}-45000)+\beta_{2}(\text { staff }-100)+\beta_{3}(\text { enroll }-3000)+u
$$

We run the regression of math 10 on (comp - 45000), (staff - 100) and (enroll 3000). The predicted mean value (say $\hat{\theta}_{0}$) and its standard error (say $\hat{\delta}_{\hat{\theta}}$) are obtained from the intercept in the above regression. Given the critical value (say c), we could construct the confidence interval as $\left[28.964-c \hat{\delta}_{\hat{\theta}}, 28.964+c \hat{\delta}_{\hat{\theta}}\right]$.

Question 2.

2. (a) Compute R^{2} and df for Models 1-4 in the last row.

	Model 1	Model 2	Model 3	Model 4
R^{2}	0.164804	0.22514	0.269134	0.349162
df	524	523	522	520

2. (b) Compare the simple and multiple regressions in Models 1 and 2 in terms of the coefficient on educ. That is, explain why the coefficient on educ in Model 2 is different from that of Model 1. Is the coefficient on educ in Model 1 unbiased? Explain why or why not.
The relation between the simple regression and multiple regression in terms of the coefficient on educ is $\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1}$, where $\tilde{\beta}_{1}$ denotes the coefficient on $e d u c$ estimated by Model 1 (simple regression), $\hat{\beta}_{2}$ denotes the coefficient on educ estimated by Model 2 (multiple regression), $\tilde{\delta}_{1}$ represents the slope from the simple regression exper on educ.

Before we talking about the unbiasedness of the coefficient, we have to know which model is the true model. If Model 1 is the true model, then the coefficient on $e d u c$ in model 1 is unbiased; if Model 2 is the true model, then the coefficient on educ is biased unless educ has no effect on exper ($\tilde{\delta}_{1}=0$) or exper has no effect on wage $\left(\hat{\beta}_{2}=0\right)$.
2. (c) How would you test the hypothesis that experience does not matter in Model 2, Model 3, and Model 4? State the null hypothesis in each case and compute the value of test statistic in each case.

Model 2:

$$
\begin{aligned}
& \text { wage }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+u \\
& H_{0}: \beta_{2}=0 \\
& H_{1}: \beta_{2} \neq 0 \\
& t_{\hat{\beta}_{2}}=\frac{0.070}{0.011}=6.36
\end{aligned}
$$

We need to compare the t statistics with some critical value. If the absolute value of t statistics is bigger than the critical value, we reject the null, which is to say exper does matter in Model 2; if lower, we cannot reject the null, which implies that exper probably does not matter in Model 2.

Model 3:

$$
\begin{aligned}
& \text { wage }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { expersq }+u \\
& H_{0}: \\
& \beta_{2}=\beta_{3}=0 \\
& H_{1}: \\
& \\
& \qquad \begin{aligned}
F & H_{0} \text { is not true. } \\
& =\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \\
& =\frac{(0.269134-0.164804) / 2}{(1-0.269134) / 522} \\
& 37.257
\end{aligned}
\end{aligned}
$$

We next compare the F statistics with some critical value. If bigger, then reject the null, exper does matter in Model 3; if lower, we cannot reject the null.

Model 4:

$$
\text { wage }=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { expers } q+\beta_{4} \text { tenure }+\beta_{5} \text { exper } * \text { tenure }+u
$$

H_{0} :
$\beta_{2}=\beta_{3}=\beta_{5}=0$
H_{1} : H_{0} is not true.

$$
\begin{aligned}
& F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \\
&=\frac{\left(0.349162-R_{r}^{2}\right) / 3}{(1-0.349162) / 520} \\
& 6
\end{aligned}
$$

We cannot calculate the F statistics with given information. We need the R_{r}^{2} of the regression of wage on educ, tenure.
2. (d) How would you test the hypothesis, using Model 2, that $\beta_{1}+7 \beta_{2}=1$? Write down the trick regression and show that the above hypothesis is equivalent to testing a single regression coefficient $=0$. Describe step by step how you would conduct the test, if you have access to a computer.

$$
\begin{array}{ll}
H_{0}: & \beta_{1}+7 \beta_{2}=1 \\
H_{1}: & \beta_{1}+7 \beta_{2} \neq 1
\end{array}
$$

We introduce a new variable θ_{1} here,

$$
\begin{gathered}
H_{0} \quad \Rightarrow \theta_{1}=\beta_{1}+7 \beta_{2}-1=0 \\
\Rightarrow \beta_{1}=\theta_{1}-7 \beta_{2}+1
\end{gathered}
$$

substituting into Model 2

$$
\text { wage }=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { exper }+u
$$

then

$$
\left.\begin{array}{c}
\text { wage }=\beta_{0}+\left(\theta_{1}-7 \beta_{2}+1\right) \text { educ }+\beta_{2} \text { exper }+u \\
=\beta_{0}+\theta_{1} \text { educ }-7 \beta_{2} \text { educ }+ \text { educ }+\beta_{2} \text { exper }+u
\end{array}\right\} \begin{aligned}
& \Rightarrow(\text { wage }- \text { educ })=\beta_{0}+\theta_{1} \text { educ }+\beta_{2}(\text { exper }-7 e d u c)+u
\end{aligned}
$$

So the equivalent null hypothesis is $H_{0}: \theta=0$. If we have access to a computer, we will run a regression of (wage $-e d u c$) on $e d u c$ and (exper $-7 e d u c$). Using the estimated value and the standard error of coefficient on $e d u c$, we could construct the t statistics for $\hat{\theta}_{1}$. By comparing the t statistics and some critical value, we will conclude whether we reject the null.
2. (e) If you add 10 to the educ variable what will happen to the estimated values of the intercept and slope coefficients in Model 1?

Model 1: $w \hat{a} g e=\hat{\beta}_{0}+\hat{\beta}_{1}$ educnew

$$
\begin{aligned}
& \quad \text { educnew }=\text { educ }+10 \\
& \Rightarrow \text { educ }=\text { educnew }-10 \\
& \Rightarrow w \hat{a} g e=\hat{\beta}_{0}+\hat{\beta}_{1}(\text { educnew }-10) \\
& \Rightarrow w \hat{a} g e=\hat{\beta}_{0}-10 \hat{\beta}_{1}+\hat{\beta}_{1} \text { educnew }
\end{aligned}
$$

The estimated value of the intercept will be $\hat{\beta}_{0}-10 \hat{\beta}_{1}=-0.905-10 \cdot 0.541=-6.315$; the estimated value of the slope coefficient will be unchanged.

What will happen to the estimated values of the intercept and slope coefficients in Model 1 if the education variable is divided by 5 ?

$$
\begin{gathered}
\text { educnew }=\frac{e d u c}{5} \\
\Rightarrow \text { educ }=5 \text { educnew } \\
\Rightarrow w \hat{a} g e=\hat{\beta}_{0}+\hat{\beta}_{1} 5 e d u c n e w \\
\Rightarrow w \hat{a} g e=\hat{\beta}_{0}+5 \hat{\beta}_{1} \text { educnew }
\end{gathered}
$$

The estimated value of the intercept will be unchanged; the estimated value of the slope coefficient will be $5 \cdot \hat{\beta}_{1}=5 \cdot 0.541=2.705$.
2. (f) Compute the marginal effect of exper in Model 4 and explain it behavior in terms of experience and tenure.
Model 4: wâge $=\hat{\beta}_{0}+\hat{\beta}_{1}$ educ $+\hat{\beta}_{2}$ exper $+\hat{\beta}_{3}$ expers $q+\hat{\beta}_{4}$ tenure $+\hat{\beta}_{5}$ exper $*$ tenure
The marginal effect of exper is

$$
\begin{aligned}
\frac{\partial w \hat{a g e}}{\partial \text { exper }} & =\hat{\beta}_{2}+2 \hat{\beta}_{3} \text { exper }+\hat{\beta}_{5} \text { tenure } \\
& =0.175-2 \cdot 0.003 \text { exper }-0.004 \text { tenure } \\
& =0.175-0.006 \text { exper }-0.004 \text { tenure }
\end{aligned}
$$

The marginal effect of exper will decrease as exper increases holding tenure constant. The marginal effect of exper will decrease as tenure increases holding exper constant.

When exper $=20$, tenure $=5$ and $e d u c=15$, the marginal effect of tenure is $0.175-0.006 \cdot 20-0.004 \cdot 5=0.035$.
2. (g) Compute the marginal effect of tenure in Model 4 and explain it behavior in terms of experience and tenure.

Model 4: wâge $=\hat{\beta}_{0}+\hat{\beta}_{1}$ educ $+\hat{\beta}_{2}$ exper $+\hat{\beta}_{3}$ expersq $+\hat{\beta}_{4}$ tenure $+\hat{\beta}_{5}$ exper $*$ tenure The marginal effect of tenure is

$$
\begin{aligned}
\frac{\partial w \hat{a} g e}{\partial \text { tenure }} & =\hat{\beta}_{4}+\hat{\beta}_{5} \text { exper } \\
& =0.291-0.004 \text { exper }
\end{aligned}
$$

The marginal effect of tenure will decrease as exper increases; while the marginal effect of tenure will not be affected by the value of tenure. The return to experience will be maximized where tenure $=72.75$.

When exper $=20$, tenure $=5$ and $e d u c=15$, the marginal effect of tenure is $0.291-0.004 \cdot 20=0.211$.
2. (h) Find the level of exper in Model 3 at which the predicted wage is maximized. How can you tell that it is maximized and not minimized at that point?

Model 3: wâge $=-3.96+0.595$ educ +0.268 exper -0.005 expersq
To get the level at which the predicted wage is maximized, we need to find the first order condition:

$$
\begin{aligned}
& \frac{\partial \text { wâge }}{\text { dexper }}= 0.268-0.01 \text { exper }=0 \\
& \Rightarrow \text { exper }=26.8 \\
& 9
\end{aligned}
$$

To check whether it is a maximum or minimum, we need to check the second order condition:

$$
\frac{\partial^{2} \text { wâge }}{\partial e x p e r^{2}}=-0.01<0
$$

So it is a maximum.

Department of Economics

