Economics 466

Introduction to Econometrics
 Spring 2009, Midterm Exam I
 Total points - 100, Time - 1 hr .15 min .

Note: Answer all questions clearly. Show your work for full credit.

1. (50 points) You are given the following data to estimate regression coefficients in several models.

$$
\begin{equation*}
n=25, \bar{X}=5, \bar{Y}=10, \sum_{i} X_{i}^{2}=650, \sum_{i} Y_{i}^{2}=2600, \sum_{i} X_{i} Y_{i}=1275 . \tag{1}
\end{equation*}
$$

(a) (5 points each) Estimate the intercept and slope coefficients for the following models.
(i) $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$
(ii) $Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}-\bar{X}\right)+u_{i}$
(iii) $Y_{i}-\bar{Y}=\beta_{0}+\beta_{1} X_{i}+u_{i}$
(iv) $Y_{i}-\bar{Y}=\beta_{0}+\beta_{1}\left(X_{i}-\bar{X}\right)+u_{i}$
(b) ($\mathbf{1 2}$ points) Compute the standard error of the slope coefficient and the t-value for testing the null hypothesis $H_{0}: \beta_{1}=0$ for the model in (i). Do you think that the standard errors and the t-values of the slope coefficient for the models in (ii)-(iv) will be the same? Explain.
(c) (8 points) Find R^{2} in model (i) and show that $R^{2}=r^{2}$ where r^{2} is the correlation coefficient between the dependant and independent variables. Do you think that R^{2} for the models in (ii)-(iv) will be the same? Why?
(d) (9 points) Your friend Don is estimating the model (v) $Y_{i}=\beta_{1} X_{i}+u_{i}$. Compute Don's slope coefficient and its standard error. If the true model is given in (i), which model would you prefer, (i) or (v)? Explain.
2. Using data on $\mathbf{5 3}$ observations, the following model was estimated

$$
\begin{equation*}
\ln Y=\beta_{0}+\beta_{1} \ln X_{1}+\beta_{2} \ln X_{2}+u \tag{2}
\end{equation*}
$$

where $Y=$ number of car sales (in thousands), $X_{1}=$ car price (in thousand dollars), $X_{2}=$ average family income (in thousand dollars). The regression results for this model are reported in the following table.

Coefficient	estimate	std. error	t-value
$\hat{\beta}_{0}$	-51.25	10.12	
$\hat{\beta}_{1}$	-1.45	0.29	
$\hat{\beta}_{2}$	1.13	0.64	
R^{2}	.81	-	-

(a) Compute the t-values in the last column of the table. (6 points)
(b) Interpret the coefficients of $\ln X_{1}, \ln X_{2}$ and R^{2} in words. From the above table is it possible to find the marginal effects of an increase in price ($\partial \hat{Y} / \partial X_{1}$) and family income $\left(\partial \hat{Y} / \partial X_{2}\right)$? If not, what additional information do you need? (12 points)
(c) Explain how you would test the following hypothesis: (i) $\beta_{1}=-1$, (ii) $\beta_{2}=1$, (iii) joint test on (i) and (ii). Choose your level of significance and perform the tests, when possible. (12 points)
(d) How would you test the hypothesis that $2 \beta_{1}+3 \beta_{2}=0$? Explain in details. (6 points)
(e) Your friend estimated the simple regression $\ln Y$ on $\ln X_{1}$ and found the slope coefficient to be -1.25 . Using the result (discussed in class) relating simple to multiple regression coefficients ($\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \hat{\delta}$), find the value of $\hat{\delta}$ (which is the regression coefficient of $\ln X_{2}$ on $\left.\ln X_{1}\right)$. Based on this result what can you say about your friend's regression? (8 points)
(f) Use the results in the above table to test the hypothesis that there is no regression. (8 points)

Answer Key Spring o9 Exam I
Ques 1
a)

$$
\text { i() } \begin{aligned}
\hat{\beta}_{1} & =\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}} \\
& =\frac{1275-25(5)(10)}{650-25(5)^{2}} \\
& =\frac{25}{25}=1 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x} \\
& =10-(1)(5)=5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\hat{\beta}_{i} & =\frac{\sum x_{i}\left(y_{i}-\bar{y}\right)-n \bar{x}\left(\overline{y_{i}-\bar{y}}\right)}{\sum x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{\sum x_{i}\left(y_{i}-\bar{y}\right)}{\sum x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum x y-n \bar{x} \bar{y}}{\sum x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{25}{25}=1 \\
\hat{\beta}_{0} & =\left(\overline{y_{i}-\bar{y}}\right)-\hat{\beta}_{1} \bar{x} \\
& =-\beta_{i}=-5
\end{aligned}
$$

ii) $\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right) y-n\left(\overline{x_{i}-\bar{x}}\right) \bar{y}}{\sum\left(x_{i}-\bar{x}\right)^{2}-n\left(\overline{x_{i}-\bar{x}}\right)^{2}}$
note that $\overline{x_{i}-\bar{x}}=\sum\left(x_{i}-\bar{x}\right) / n=0$

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right) y}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x y-\bar{x} \sum y}{\sum x^{2}-n \bar{x}^{2}} \\
&=\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}}=\frac{25}{25}=1 \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1}\left(\overline{\left(x_{i}-\bar{x}\right)}=\bar{y}=10\right.
\end{aligned}
$$

(v)

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)-n \bar{x} \bar{y}}{\sum\left(x_{i}-\bar{x}\right)^{2}-n \bar{x}}
$$

$$
\bar{x}=\frac{\sum\left(\frac{x_{i}-\vec{x}}{}\right)}{n} ; \bar{y}=\frac{\left.\sum y_{i}-\bar{y}\right)}{n}
$$

So $\bar{x}=0$ and $\bar{y}=0$

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}} \\
& =\frac{25}{25}=1 \\
\hat{\beta}_{0} & =\bar{y}-\hat{\beta}_{1} \bar{x}=0
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { b) } \begin{aligned}
& \operatorname{se}\left(\hat{\beta}_{i}\right)=\sqrt{\operatorname{var}\left(\hat{\beta}_{1}\right)} \\
&=\sqrt{\frac{\hat{\sigma}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}} t=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \\
& \hat{\sigma}^{2}==\frac{\sum \frac{\sum \hat{u}_{i}^{2}}{n-2}}{0.361}=2.77 \\
&= \frac{S S T-S S E}{n-2} \\
&= \frac{\sum\left(y_{i}-\bar{y}\right)^{2}-\hat{\beta}_{1}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}{n-2} \\
&=\frac{\sum y^{2}-n \bar{y}^{2}-\hat{\beta}_{1}^{2} \Sigma x_{1}^{2}+\hat{\beta}_{1}^{2} n \bar{x}^{2}}{n-2} \\
&=\frac{2600-25(10)^{2}-650+25(5)^{2}}{23} \\
&=\frac{75}{23}=3.26 \\
& \operatorname{Se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{3.26}{25}}=0.361
\end{aligned}
\end{array}
$$

c)

$$
\begin{align*}
R^{2} & =\frac{S S E}{S S T}=\frac{\hat{\beta}_{i}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}} \tag{3}\\
& =\frac{\hat{\beta}_{1}^{2} \Sigma x_{i}^{2}-\hat{\beta}_{1}^{2} n \bar{x}^{2}}{\sum y^{2}-n \bar{y}^{2}} \\
& =\frac{650-625}{2600-25(10)^{2}}=\frac{25}{100}=0.25 \\
r^{2}= & \frac{\{\operatorname{cov}(x, y)\}^{2}}{\operatorname{Var} x \operatorname{Var} y}=\frac{\left[\sum(x-\bar{x})(y-\bar{y})\right]^{2}}{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}=\frac{\left(\sum x y-n \bar{x} \bar{y}\right)^{2}}{\left(\sum x^{2}-n \bar{x}^{2}\right)\left(\sum y^{2}-n \bar{y}^{2}\right)} \\
& =\frac{(1275-1250)^{2}}{(650-625)(2600-2500)}=\frac{25^{2}}{25 \cdot 100}=0.25
\end{align*}
$$

The k^{2} will be the same. The SSE and SST do not change for each model
d)

$$
\begin{aligned}
& \text { d) } \begin{aligned}
\tilde{\beta}_{1} & =\frac{\sum x y}{\sum x^{2}}=\frac{1275}{650}=1.96 \\
& =\sqrt{\frac{\operatorname{Se}\left(\tilde{\beta}_{1}\right)}{\sum x^{2}}}
\end{aligned}=\sqrt{\operatorname{Var} \tilde{\beta}_{1}} \\
& \\
&
\end{aligned}=\sqrt{\frac{3.26}{650}}=0.0708 .
$$

d) contd It depends.

Since $\hat{\beta}_{1}$ is unbiased \& \tilde{b}_{1} is biased we cannot say that we will choose the one with minimum variance. Comparing variances will not make sense. If unbiaseciness is more important then prefer (i)) minimum variance is more important then prefer (v)

Ques 2
a)

Coefficient	estimate	std-error	t-value
$\hat{\beta}_{0}$	-51.25	10.12	-5.06
$\hat{\beta}_{1}$	-1.45	0.29	-5
$\hat{\beta}_{2}$	1.13	0.64	1.766
	using	$t=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}$	

b) $\hat{\beta}_{1}$: Holding average family income fixed, a 1 percent increase in car price will lead to a 1.45 percent decrease in the estimated number of car sales.
$\hat{\beta}_{2}$: Holding car price fixed, a 1% increase in average family income will lead to a 1.13% increase in the estimated number of car sales.
R^{2} : 81% of the total sample variation in \# of car sales is explained by car price and avg family income.

$$
\frac{\partial \ln y}{\partial \ln x}=\frac{\frac{\partial y}{y}}{\frac{\partial x}{x}}=\frac{\partial y}{\partial x} \cdot \frac{x}{y} \Rightarrow \frac{\partial y}{\partial x}=\frac{\partial \ln y}{\partial \ln x} \cdot \frac{y}{x}
$$

Since $\beta_{i} \quad i=1,2$ captures only $\frac{\partial \ln Y}{\partial \ln x_{i}}$ then you need more information. You also need $\frac{y}{x_{i}} \quad i=1,2$

Question 2 cent id
c) i) Step 1: set up mill hypothesis $\{$ alternative hypothesis

$$
\begin{aligned}
& H_{0}: \quad \beta_{1}=-1 \\
& H_{1}: \quad \beta_{1} \neq-1
\end{aligned}
$$

step: then calculate t-value

$$
t=\frac{\hat{\beta}_{1}+1}{S\left(\hat{\beta}_{1}\right)}=-1.45+1=-1.55
$$

choosing 10% level of significance at $50 \mathrm{df}, t_{50}=1.675905$
choosing 5% " " 50 cf, $t_{50}=2.008559$

$$
1 \% \text { " " "50df, tr 50 }=2.677793
$$

we fail to reject the null hypothesis since (t-stat $)<t_{c}$
ii) Step 1: set up null hypothesis ξ alternative hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{2}=1 \\
& H_{1}: \beta_{2} \neq 1
\end{aligned}
$$

step 2. then calculate t-value

$$
t=\frac{\hat{\beta}_{2}-1}{\sec \left(\hat{\beta}_{2}\right)}=\frac{1.13-1}{0.64}=0.203
$$

choosing 10% level of significance at $50 \mathrm{df}, t_{50}=1.675905$

$$
\begin{array}{llllll}
11 & 5 \% & n & n & n & 50 d f, \\
t_{50}=2.008559 \\
n & 1 \% & \text { level n } & n & n & 50 d f, t_{50}=2.677193
\end{array}
$$

we fail to reject the null hypothesis since
$\mid t$-stat $\mid<t_{c}$
iii) i) $\{$ ii) jointly
step 1: $H_{0}: \beta_{1}=-1, \beta_{2}=1$
$H_{1}:$ mill is not hue
This is a joint test so it requires the use of the F-dist.
step 2: Calculate F-stat.

$$
F=\frac{\left(S S R_{R}-S S R_{u R}\right) / q}{S S R_{u R} / n-k-1}
$$

$\frac{\text { import ant note: }}{R^{2}}$
R^{2} cannot be wad in this case, because the SST for the restricted regression changes.
ie $\beta_{1}=-1\left\{p_{2}=1 \Rightarrow \ln y+\ln x_{1}-\ln x_{2}=\beta_{0}+u\right.$

$$
\Rightarrow \ln y^{*}=\beta+u \text { where } y^{*}=\frac{x_{1} y}{x_{2}}
$$

Slaps: Find $F_{2, s o}$ at 5%, Ilorivit, then compare F-stat. If. F-stat falls outside critical region, we reject the mill.
d) set $\theta_{1}=2 \beta_{1}+3 \beta_{2} \quad \hat{\theta}=2 \hat{\beta}_{1}+3 \hat{\beta}_{2}$

$$
\begin{aligned}
& H_{0}: \theta_{1}=0 \\
& H_{1}: \theta_{1} \neq 0
\end{aligned}
$$

In order to get $\hat{\theta}$ we first have to modify the equation

$$
\begin{aligned}
& \ln y=\beta_{0}+\beta_{1} \ln x_{1}+\beta_{2} \ln x_{2}+u \\
& \beta_{1}=\frac{\theta-3 \beta_{2}}{2} \\
& \ln y=\beta_{0}+\frac{\theta_{1}-3 \beta_{2}}{2} \ln x_{1}+\beta_{2} \ln x_{2}+u \\
& 2 \ln y=2 \beta_{0}+\theta_{1} \ln x_{1}+\beta_{2}\left(2 \ln x_{2}-3 \ln x_{1}\right)+u \\
& x_{2}^{*} / x_{1}^{3}
\end{aligned}
$$

Let $y^{*}=y^{2} ; \beta_{0}^{*}=\beta_{0} ; x_{2}^{*}=x_{2}^{2} / x_{1}^{3}$
then $y^{*}=\beta_{0}^{*}+\theta_{1} \ln x_{1}+\beta_{2} \ln x_{2}^{*}+u$

Run this regression to get

$$
\hat{y}^{*}=\hat{\beta}_{0}^{*}+\hat{\theta}_{1} \ln x_{1}+\hat{\beta}_{2} \ln x_{2}^{*}
$$

$\hat{\theta}_{1}$ is the coefficient on $\ln X_{1}$. Extract this coefficient $\&$ its corresponding std. error when you ran this regression in a software package such as Excel.
then we can calculate the t-stat.
$t=\frac{\hat{\theta}}{\operatorname{se}(\hat{\theta})}$. We compare this t-stat to the critical value, t_{50} at our chosen significance level to determine whether we reject or fail to reject the null hypothesis.
e) $\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \hat{\delta} \Rightarrow \hat{\delta}=\frac{\tilde{\beta}_{1}-\hat{\beta}_{1}}{\hat{\beta}_{2}}=\frac{-1.25+1.45}{1.13}=0.177$ First since $\hat{\delta} \neq 0$, we can say that there is correlation between X_{1} and $X_{2} x^{\infty}$ my friend's regression (simple) is not identical to the multiple regression. Wile can also assume that the partial relationship between $x_{2} \& y$ is positure \& the correlation between $X_{1} \& X_{2}$ is achoo positive. So it would seem there is a positive bias.
f) $H_{0}: \beta_{1}=0, \beta_{2}=0$
H_{1} : null is not correct

$$
F=\frac{R_{u R}^{2} / q}{\left(1-R_{u R}^{2}\right) / n-k-1}=\frac{0.81 / 2}{0.19 / 50}=106.58
$$

at 5% level of significana, $F_{2,50}=3.1826$. Hence we reject the null. Given the large value il the F-stat, we can safely say that we can reject the null at any level of significance.

