Assignment #1 Due: Feb 18?? Econometrics 616

1. The file tbrate.txt contains data for the period 1950:1 to 1996:4 for three economics series: r_t , the interest rate on 90-day treasury bills, π_t , the rate of inflation, and y_t , the logarithm of real GDP. Using this data estimate the model:

$$\Delta r_{t} = \beta_{1} + \beta_{2}\pi_{t-1} + \beta_{3}\Delta y_{t-1} + \beta_{4}\Delta r_{t-1} + \beta_{5}\Delta r_{t-2} + u_{t}$$

Where Δ is the first difference operator defined as $\Delta x_t = x_t - x_{t-1}$. Record both the estimates of all model parameters as well as determining the fitted residuals of the model, \hat{u}_t . This will be regression 1. Next regress Δr_t on a constant, $\Delta y_{t-1}, \Delta r_{t-1}$, and Δr_{t-2} . Save the fitted residuals and call them \hat{e}_t . When this is done regress π_{t-1} on a constant, $\Delta y_{t-1}, \Delta r_{t-1}$, and Δr_{t-2} . Save the fitted residuals from this regression and call them \hat{v}_t . Now run the regression $\hat{e}_t = \alpha \hat{v}_t + w_t$. What do you notice about the parameter estimate from this regression? What do you notice about the fitted residuals, \hat{w}_t , from this regression? The niceness of your results are called the Frisch-Waugh-Lovell theorem. Curious readers may consult Frisch and Waugh, *Econometrica* 1933, Lovell, *Journal of the American Statistical Association*, 1963 or Davidson and MacKinnon, *Estimation and Inference in Econometrics*, 1993, particularly chapter 1.

2. Simple versus multiple regression coefficients. Consider the multiple regression $Y_i = \alpha + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$ along with the following auxiliary regressions $X_{2i} = \hat{a} + \hat{b}X_{3i} + \hat{v}_{2i}$ $X_{3i} = \hat{c} + \hat{d}X_{2i} + \hat{v}_{3i}$

In class it was shown that $\hat{\beta}_2$ could be interpreted directly from the regression of Y on the OLS residuals \hat{v}_2 . A similar interpretation can be given to $\hat{\beta}_3$. Kennedy (1981, pg.416, it is not necessary to read Kennedy's paper) claims that $\hat{\beta}_2$ is not necessarily the same as $\hat{\delta}_2$, the OLS estimate of obtained from the regression $Y_i = \gamma + \delta_2 \hat{v}_{2i} + \delta_3 \hat{v}_{3i} + w_i$. Prove this claim by finding a relationship between both $\hat{\beta}_2$ and $\hat{\beta}_3$ and $\hat{\delta}_2$ and $\hat{\delta}_3$.

- 3. For the simple regression $Y_i = \alpha + \beta_2 X_{2i} + u_i$ show that
 - a) $\hat{\beta}_2 = \frac{\sum xy}{\sum x^2}$ can be obtained using the residual interpretation by

regressing X on a constant first, obtaining the residuals \hat{v} , and then regressing Y on \hat{v} .

- b) $\hat{\alpha} = \overline{Y} \hat{\beta}_2 \overline{X}_2$ can be obtained using residuals as well by regressing a column of ones on X_2 , obtaining the residuals \hat{w} , and then regressing Y on \hat{w} .
- c) Check the $Var(\hat{\alpha})$ and $Var(\hat{\beta})$ in parts (a) and (b) with those obtained from the residualing interpretation.
- 4. Effect of additional regressors on R^2 . Suppose that the multiple regression has K_1 regressors in it. Denote the OLS **residual** sum of squares by RSS_1 . Now add K_2 additional regressors so that the total number of regressors in the model is $K = K_1 + K_2$. Denote the corresponding OLS residual sum of squares by RSS_2 . Show that $RSS_2 \le RSS_1$ and conclude that the corresponding R-squares from the models satisfy $R_2^2 \ge R_1^2$.
- 5. Suppose that we have estimated the parameters of the multiple regression model $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$ by OLS. Denote the residuals as e_i and the fitted values by \hat{Y}_i .
 - a) What is the R^2 of the regression *e* on a constant, X_2 , and X_3 ?
 - b) If we regress Y on a constant and \hat{Y} , what are the estimated intercept and slope coefficients? What is the relationship between the R^2 of this regression and the R^2 of the original regression?
 - c) If we regress Y on a constant and e, what are the estimated intercept and slope coefficients? What is the relationship between the R^2 of this regression and the R^2 of the original regression?
 - d) Suppose that we add a new explanatory variable X_4 to the model and reestimate the parameters using OLS. Show that the estimated coefficient of X_4 and its estimated standard error will be the same as in the OLS regression of *e* on a constant, X_2 , X_3 , and X_4 .

References

Kennedy, P.E.(1981), "The Balentine: A Graphical Aid for Econometrics," *Australian Economic Papers*, 20:414-416.