Assignment \#1
 Due: Feb 18??
 Econometrics 616

1. The file tbrate.txt contains data for the period 1950:1 to 1996:4 for three economics series: r_{t}, the interest rate on 90-day treasury bills, π_{t}, the rate of inflation, and y_{t}, the logarithm of real GDP. Using this data estimate the model:

$$
\Delta r_{t}=\beta_{1}+\beta_{2} \pi_{t-1}+\beta_{3} \Delta y_{t-1}+\beta_{4} \Delta r_{t-1}+\beta_{5} \Delta r_{t-2}+u_{t}
$$

Where Δ is the first difference operator defined as $\Delta x_{t}=x_{t}-x_{t-1}$. Record both the estimates of all model parameters as well as determining the fitted residuals of the model, \hat{u}_{t}. This will be regression 1. Next regress Δr_{t} on a constant, $\Delta y_{t-1}, \Delta r_{t-1}$, and Δr_{t-2}. Save the fitted residuals and call them \hat{e}_{t}. When this is done regress π_{t-1} on a constant, $\Delta y_{t-1}, \Delta r_{t-1}$, and Δr_{t-2}. Save the fitted residuals from this regression and call them \hat{v}_{t}. Now run the regression $\hat{e}_{t}=\alpha \hat{v}_{t}+w_{t}$. What do you notice about the parameter estimate from this regression? What do you notice about the fitted residuals, \hat{w}_{t}, from this regression? The niceness of your results are called the Frisch-Waugh-Lovell theorem. Curious readers may consult Frisch and Waugh, Econometrica 1933, Lovell, Journal of the American Statistical Association, 1963 or Davidson and MacKinnon, Estimation and Inference in Econometrics, 1993, particularly chapter 1.
2. Simple versus multiple regression coefficients. Consider the multiple regression $Y_{i}=\alpha+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i}$ along with the following auxiliary regressions $X_{2 i}=\hat{a}+\hat{b} X_{3 i}+\hat{v}_{2 i}$ $X_{3 i}=\hat{c}+\hat{d} X_{2 i}+\hat{v}_{3 i}$
In class it was shown that $\hat{\beta}_{2}$ could be interpreted directly from the regression of Y on the OLS residuals \hat{v}_{2}. A similar interpretation can be given to $\hat{\beta}_{3}$. Kennedy (1981, pg.416, it is not necessary to read Kennedy's paper) claims that $\hat{\beta}_{2}$ is not necessarily the same as $\hat{\delta}_{2}$, the OLS estimate of obtained from the regression $Y_{i}=\gamma+\delta_{2} \hat{v}_{2 i}+\delta_{3} \hat{v}_{3 i}+w_{i}$. Prove this claim by finding a relationship between both $\hat{\beta}_{2}$ and $\hat{\beta}_{3}$ and $\hat{\delta}_{2}$ and $\hat{\delta}_{3}$.
3. For the simple regression $Y_{i}=\alpha+\beta_{2} X_{2 i}+u_{i}$ show that
a) $\hat{\beta}_{2}=\sum x y / \sum x^{2}$ can be obtained using the residual interpretation by regressing X on a constant first, obtaining the residuals \hat{v}, and then regressing Y on \hat{v}.
b) $\hat{\alpha}=\bar{Y}-\hat{\beta}_{2} \bar{X}_{2}$ can be obtained using residuals as well by regressing a column of ones on X_{2}, obtaining the residuals \hat{w}, and then regressing Y on \hat{w}.
c) Check the $\operatorname{Var}(\hat{\alpha})$ and $\operatorname{Var}(\hat{\beta})$ in parts (a) and (b) with those obtained from the residualing interpretation.
4. Effect of additional regressors on R^{2}. Suppose that the multiple regression has K_{1} regressors in it. Denote the OLS residual sum of squares by $R S S_{1}$. Now add K_{2} additional regressors so that the total number of regressors in the model is $K=K_{1}+K_{2}$. Denote the corresponding OLS residual sum of squares by $R S S_{2}$. Show that $R S S_{2} \leq R S S_{1}$ and conclude that the corresponding R-squares from the models satisfy $R_{2}^{2} \geq R_{1}^{2}$.
5. Suppose that we have estimated the parameters of the multiple regression model $Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i}$ by OLS. Denote the residuals as e_{i} and the fitted values by \hat{Y}_{i}.
a) What is the R^{2} of the regression e on a constant, X_{2}, and X_{3} ?
b) If we regress Y on a constant and \hat{Y}, what are the estimated intercept and slope coefficients? What is the relationship between the R^{2} of this regression and the R^{2} of the original regression?
c) If we regress Y on a constant and e, what are the estimated intercept and slope coefficients? What is the relationship between the R^{2} of this regression and the R^{2} of the original regression?
d) Suppose that we add a new explanatory variable X_{4} to the model and reestimate the parameters using OLS. Show that the estimated coefficient of X_{4} and its estimated standard error will be the same as in the OLS regression of e on a constant, X_{2}, X_{3}, and X_{4}.

References
Kennedy, P.E.(1981), "The Balentine: A Graphical Aid for Econometrics," Australian Economic Papers, 20:414-416.

