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1. For your first regression you should have gotten something similar to the 
following:  

 
Valid cases:                   185      Dependent variable:                   FDr 
Missing cases:                   0      Deletion method:                     None 
Total SS:                 165.132      Degrees of freedom:                  180 
R-squared:                   0.134      Rbar-squared:                         0.115 
Residual SS:            142.934      Std error of est:                       0.891 
F (4,180):                    6.988      Probability of F:                      0.000 
Durbin-Watson:          2.062 
 
                                    Standard                       Prob   Standardized    Cor with 
Variable     Estimate      Error      t-value          >|t|     Estimate          Dep Var 
-------------------------------------------------------------------------------------------- 
Int.         -0.231943    0.125614   -1.846468     0.066       ---         ---   
lagp         0.016065    0.020034    0.801897     0.424    0.057370    0.019556 
fdlagy    18.380743    5.758921    3.191699     0.002    0.231255    0.266486 
fdlagr       0.237455    0.074070    3.205812     0.002    0.236410    0.253725 
fd2lagr    -0.154017    0.072538  -2.123248    0.035   -0.153180   -0.076320 
 
And for your auxiliary regressions you should have obtained: 
 
Valid cases:                   185      Dependent variable:             FDR 
Missing cases:                   0      Deletion method:                 None 
Total SS:                 165.132      Degrees of freedom:             181 
R-squared:                   0.131      Rbar-squared:                    0.117 
Residual SS:            143.445      Std error of est:                  0.890 
F(3,181):                     9.121      Probability of F:                 0.000 
Durbin-Watson:          2.047 
 
                                           Standard                 Prob       Standardized  Cor with 
Variable             Estimate      Error      t-value    >|t|           Estimate    Dep Var 
------------------------------------------------------------------------------------------------ 
Int                  -0.158011    0.085232  -1.853896     0.065       ---         ---   
FDLAGY      17.475550   5.641636    3.097603     0.002    0.219866    0.266486 
FDLAGR        0.243729   0.073583    3.312290     0.001    0.242656    0.253725 
FD2LAGR    -0.147164    0.071962   -2.045018     0.042   -0.146364   -0.076320 
 
 
 
 
 



Valid cases:                   185      Dependent variable:                LAGP 
Missing cases:                   0      Deletion method:                      None 
Total SS:               2105.973      Degrees of freedom:                   181 
R-squared:                   0.060      Rbar-squared:                          0.045 
Residual SS:          1978.563      Std error of est:                        3.306 
F(3,181):                     3.885      Probability of F:                       0.010 
Durbin-Watson:          0.395 
 
                                          Standard                     Prob       Standardized     Cor with 
Variable     Estimate            Error      t-value        >|t|          Estimate           Dep Var 
---------------------------------------------------------------------------------------------- 
Int                 4.602092    0.316544   14.538566    0.000           ---             ---   
FDLAGY  -56.346248  20.952572  -2.689228     0.008    -0.198509   -0.169888 
FDLAGR     0.390527    0.273282    1.429025     0.155     0.108874    0.095533 
FD2LAGR   0.426592    0.267261    1.596165     0.112     0.118805    0.137823 
 
 
 
Valid cases:                   185      Dependent variable:                EHAT 
Missing cases:                   0      Deletion method:                      None 
Total SS:                 143.445      Degrees of freedom:                   183 
R-squared:                   0.004      Rbar-squared:                        -0.002 
Residual SS:            142.934      Std error of est:                       0.884 
F(1,183):                     0.654      Probability of F:                      0.420 
Durbin-Watson:          2.062 
 
                                    Standard                          Prob   Standardized   Cor with 
Variable     Estimate      Error              t-value     >|t|      Estimate         Dep Var 
---------------------------------------------------------------------------------------------- 
VHAT         0.016065    0.019869    0.808552     0.420    0.059663    0.059663 
 
Notice that the estimate of VHAT is the same as the estimate of lagp from the first 
regression that you ran.  Checking the residuals is up to you.  But this should give you 
a taste of the FWL Theorem.  See me with any questions about this if you are still not 
convinced (Chris not Subal). 
 
2. The answer to this question is very algebra intensive.  Here goes: 

0ˆˆ,0ˆˆ0ˆ,0ˆ,0ˆ 3232 ===== ∑∑∑∑∑ iiiiiii wvwvwvv  which all follow from 
the Gauss-Markov assumptions from the 4 regressions.  We will use these 
properties to derive a relationship b/w the coefficients from the first regression 
and the last.  ∑∑∑ += iiiii vvvYv 323
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222 ˆˆˆˆˆˆ δδ follows if we multiply the last 

regression by the residuals from the 2nd regression and sum over all observations.  
Next we will substitute in the definition of the residuals from the 3rd regression. 
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above properties as well as 0ˆˆ 2332 ==∑∑ iiii XvXv .  Now we will substitute 
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similar display of algebra it may be shown that .  See me (Chris) if 
you cannot figure out the algebra for this one. 
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3. To show that the slope coefficient can be interpreted as a residual interpretation 

we will first need to regress X on a constant.  If we do this we get the following: 
XXXXvXX iiiii −=−== ˆˆˆ and now if we regress Y on the residuals we get 

the following: 
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intercept can also be interpreted from a residual point of view as well.  We regress 
a vector of ones on our X variable to get 
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can simplify this to get 
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intercept also has a residual interpretation although it was a little trickier to get.  
To answer the third part of the question we take the variance of our original 
definition of the slope coefficients as follows: 
( ) ( ) ( )∑∑∑∑ −=== 22222 ˆˆˆˆ XXvvYvVV iiiii σσβ  which is the definition 

of the variance for the slope coefficient from a simple regression.  As for the 
intercept we use the same procedure: 
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definition of the variance for the intercept from the simple regression. 
 



 
4. The Intuitive way:  When you add more variable to a regression there is no way to 

negatively explain something, either you have explanatory power or you do not.  
If you have explanatory power with an additional regressor then your residual 
sum of squares must become smaller as you are explaining more.                       
The Mathematical Way:  OLS tries to minimize the sum of squares by choosing 
the appropriate coefficients for the model.  

and so if I add more regressors to 

the model then under this framework I could in essence make their parameter 
estimates zero and the original parameter estimates those obtained by OLS which 
would mean that the residual sum of squares would be minimized if the true 
parameter estimates of the additional variable were really zero.  However if they 
were non-zero then the residual sum of squares would have to be smaller with 
OLS since it is minimizing the sum of squared errors for the old variable and the 
new ones added to the model.  There is an even more mathematical way to show 
this with matrix algebra. 

(∑ −−−= 2
11min KiKiiOLS XXYRSS ββα

β
)

( )
( ) YMYRSSvZXY

YMYRSSuXY

ZX

x

,2

1

'2
'1
=++=

=+=
γβ

β
Where the M matrix is an idempotent 

matrix that projects orthogonally off of the space spanned by M’s sub-script.  We 
can use the results of the FWL theorem to complete the proof.  By the FWL 
Theorem we know that YMMMYRSSvZMYM XZXMXXX '2 =+= γ   
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12 RSSYPRSSRSS ZXM ≤−=  where the final result holds due to the fact that 
the P matrix is idempotent and the squared norm of P is always positive. 

 
5. If we regress the residuals from a two variable regression on a constant and the 

two variables the coefficient of determination will be zero since the residuals are 
uncorrelated with any of the exogenous variables from the regression.  Having a 
positive coefficient of determination would go against one of the Gauss-Markov 
assumptions.  If we regress Y on its fitted value and a constant then we will see 
that the intercept estimate will be very near zero and the slope coefficient will be 
approximately one.  The coefficient of determination will be the same from the 
model that yielded the fitted Y values.  If we reverse the procedure and regress Y 
on the residuals from the regression we will see that the estimated intercept is the 
mean value of Y and that the slope estimate is one once again.  The coefficient of 
determination will not be the same though.  It will be equal to one minus the old 
coefficient of determination because now we are substituting the residual sum of 
squares for the explained sum of squares for this regression.  It needs to be 
backwards to preserve the relationship between Y and its fitted value.  We will 
need math to answer the next part of this question.  
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The r-hat in the equations is the residual from the regression of the new X 
variable on a constant and the pre-existing X variables.  If we look at the 
definition for the variance of an estimator from a multiple regression (see 
Wooldridge, 2002, pg. 96) we can see that taking the variance of either one of the 
above estimators, since they are both the same, will yield the same formula from 
any undergraduate econometrics text book.   We can also answer this question 
using partitioned matrix results.  If you remember from class, I derived the 
formula for the slope coefficient for the simple linear regression model using a 
partitioned matrix.  Refer to the notes if you don’t remember.  I can use the same 
argument here as I did there to show my result.  In this case I will partition the 
matrix so that not only the constant but the other X’s besides the new X are what I 
call .  And the coefficient vector is partitioned likewise so that the intercept and 
the pre-existing slope coefficients are now what I call .  Using this 
transformation and making the appropriate change in the A matrix the result will 
follow.   
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