
Econometrics 616—Spring 2004 
Exam II—Answer Key 
 

1. a) Heteroskedasticity is the problem of a non-spherical error variance-covariance 
matrix.  In layman’s terms it suggests that when we analyze our data and try to 
use statistical inference procedures, the manner in which the random shocks affect 
our endogenous variables are not equivalent.  By ignoring this fact a researcher 
can be mislead and make erroneous conclusions drawn from hypothesis testing 
due to the fact that the variances of the estimators are incorrect as well as any 
covariance that exists between parameters.   
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 while the variance of the 
GLS estimator equals: 
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To show that the GLS estimator is more efficient than the OLS estimator we will 
use the Cauchy-Schwartz inequality.  Let w  then the inequality 

states that 
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that n which allows us to show that GLS is more efficient than 
OLS. 
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2. ( )2,0~ σβ NuuXY +=   First we will define the OLS estimate and its variance 

before proceeding to the LR, LM, and W test statistics.   
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Using the formulas given on the exam we compute the test statistics as follows: 
 

( ) ( ) 67657.6133531.05016905.230259.25075.8ln10ln50 =⋅=−⋅=−⋅=LR  
( ) 25.625.151075.81050 =⋅=−=LM  
( ) 14286.725.171429.575.875.81050 =⋅=−⋅=W  

And we can check to see that W .  To show the next part we simply 
computer the t-statistic for 
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1:0 =βH  which is ( ) ( )ββ ˆ..1ˆ es−=t .  To find the 

standard error all we need is the estimate of the variance.  



( ) neeV 'ˆ,20ˆˆ 22
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== σσβ .  This suggests that 175.05075.8ˆ 2 ==σ  and so our 
standard error becomes 093541.20175.0 = which makes our t-statistic 

67261.2093541.25. ==t and we see that the square of this number is equivalent 
to our Wald statistic proving our desired result. 
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a) If we erroneously assume that model 2 is the correct model then we can 
find that the bias of our OLS estimator is: 
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1121121 XXXXXββ  and we note that the OLS 
estimator is biased upwards is the correlation between the included and the 
excluded variable has the same sign as the excluded variable’s associated 
parameter. 
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2
11

22 1ˆ XXruσβV .  Using the hint, we find 

that ( ) 111
2 XMXu −′= σβ̂V and we note that the scalar in the denominator is 

the residual sum of squares from a regression of on a constant and .  
This means that 
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c) In the over specified model 
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coefficient of determination from the regression of on a constant, , 
and .  Using the hint again we have 
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denominator of this fraction is just the residual sum of squares of the 
regression of on a constant, , and .  Multiplying and dividing the 
denominator by the total sum of squares yields the following: 
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d) To compare the variances between the over specified model and the under 
specified we must note that each model does not have identical errors and 
so does not necessarily have identical error variances.  We would believe 
that the over specified model would have a lower error variance than that 



from the under specified model.  However because the over specified 
model has more variables it must also have a smaller denominator due to 
the fact that  .  Since both the denominator and the numerator are 
smaller for the over specified model there is no sure way to say which 
parameter variance is larger.  However an over specified is unbiased while 
and under specified model is not which leads to biased parameter 
estimates when the model being estimated is not a special case of the true 
Data Generating Process as is the case with a model that is under 
specified. 
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4. ( ) ( )Ω+=+= 22 ,0~,,0~, uttttttt uiiduuuY σσεερα ε  

 
a) For the AR(1) model above either the Cochrane-Orcutt procedure or the 

Prais-Winsten procedure is applicable.  The only difference between the 
two is whether or not the first observation is included in all of the auxiliary 
regressions or not.  For both procedures you estimate the model as if there 
was no AR(1) process governing the movement of the random error term.  
This would yield a preliminary estimate of the intercept from which thee 
vector of residuals could be found.  The next step would be to use these 
residuals in the AR(1) model to estimate rho.  Once rho is found then the 
data can be transformed with C-O making sure to drop the first 
observation or with P-W where the first observation is different from C-O 
and the rest are equivalent.  This procedure can be iterated until some 
desired tolerance level is achieved between successive rhos.  To obtain a 

final estimate of the intercept we have the following ( ) ( )ρραα ˆ11ˆ
^

−−= . 
 
b) If instead of the standard AR(1) process we introduce heteroskedasticity 

into the innovations of the AR(1) then we must use a slight variant for the 
procedure in part a.  We first develop a preliminary guess to the AR(1) 
movement by choosing a rho.  We next transform the model as we would 
in the C-O procedure.  Once we have done this only the AR(1) innovation 
will be left and we can then correct for heteroskedasticity in our model.  
We then find the residuals from this regression and run them in the AR(1) 
regression to find an estimate of rho.  This is possible because the 
residuals have already been corrected for heteroskedasticity in the first 
step.  Once we find our new estimate of rho we again use the C-O 
transformation of the data and correct for heteroskedasticity before 
running the regression.  This procedure can be run as many times as one 
wishes until some desired tolerance level is achieved.  Due to the fact that 
there will be an x-variable associated with the intercept we can find it 
exactly the same way we did in part a. 

 



c) ( )2,0~ uttt iiduuY σα +=  and so Y=α̂ .  Some manipulation yields us 
the following: 
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d) If we had an MA(1), ( )2
1 ,0~ εσεφεε iidu tttt −+= , instead of an AR(1) 

we would estimate the model ignoring any type of correlation between the 
variables.  We would obtain an estimate of the intercept and use it to find 
the residuals of the model.  Once these were found we compute the 
variance and the covariance of them.  These estimates allow us to find the 
coefficient of the MA(1) model as follows:  
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.  This gives us a quadratic formula 
in the variance and the covariance of the residuals that will allow us to 
find an estimate of the innovation coefficient.  We see that 
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quadratic equation to solve for phi as  ( ) aac 24−bbˆ 2±−=φ . 


