Econometrics 616

Answer Key: Exam I
Spring 2004

1. $x^{\prime} x=\left[\begin{array}{cc}50 & 60 \\ 60 & 100\end{array}\right] x^{\prime} y=\left[\begin{array}{c}10 \\ 5\end{array}\right], \quad y^{\prime} y=20.75, \quad n=20$

$$
b_{2}=\frac{100 \cdot 10-60 \cdot 5}{50 \cdot 100-60^{2}}=\frac{700}{1400}=.5, \quad b_{3}=\frac{50 \cdot 5-60 \cdot 10}{50 \cdot 100-60^{2}}=\frac{-350}{1400}=-.25
$$

$$
V\left(\hat{b}_{2}\right)=\frac{\hat{\sigma}^{2} \cdot 100}{50 \cdot 100-60^{2}}=\frac{\hat{\sigma}^{2}}{14}, \quad V\left(\hat{b}_{3}\right)=\frac{\hat{\sigma}^{2} \cdot 50}{50 \cdot 100-60^{2}}=\frac{\hat{\sigma}^{2}}{28}
$$

$$
\hat{\sigma}^{2}=\frac{e^{\prime} e}{n-k}=\frac{y^{\prime} y-b x^{\prime} y}{n-k}=\frac{20.75-(.5 \cdot 10-.25 \cdot 5)}{20-3}=1
$$

$$
V\left(\hat{b}_{2}\right)=\frac{1}{14}, \quad V\left(\hat{b}_{3}\right)=\frac{1}{28}
$$

b) $t=\frac{b_{2}+b_{3}}{\text { s.e. }\left(b_{2}+b_{3}\right)}=\frac{.5-.25}{\sqrt{1 / 14+1 / 28+2 \cdot(-6 / 140)}}=\frac{.25}{\sqrt{3 / 140}}=1.70783$ which is slightly lower than 2 so we would fail to reject for a standard significance level.
c) $\hat{\theta}_{0}=\bar{Y}-\hat{\beta}_{2} \overline{\widetilde{X}}=10-.5 \cdot(20-25)=10-(-2.5)=12.5=E\left(\hat{Y}_{0}\right)$

$$
\hat{\delta}=\frac{(50+100-2 \cdot 60) \cdot 5-(60-100)(10-5)}{(50+100-2 \cdot 60) \cdot 100-(60-100)^{2}}=\frac{30 \cdot 5-(-40) \cdot 5}{30 \cdot 100-40^{2}}=\frac{350}{1400}=.25
$$

d) $V \hat{(\hat{\delta}})=\frac{\hat{\sigma}^{2} \cdot(50+100-2 \cdot 60)}{1400}=\frac{3}{140}$

$$
t=\frac{\hat{\delta}}{\text { s.e. }(\hat{\delta})}=\frac{.25}{\sqrt{3 / 140}}=\frac{.25}{.146385}=1.70783
$$

we get the same value as is expected.

$$
\begin{aligned}
& Y-\bar{Y}=\beta_{1}-\left(\bar{Y}-\beta_{2} \bar{X}_{2}-\beta_{3} \bar{X}_{3}\right)+\beta_{2}\left(X_{2}-\bar{X}_{2}\right)+\beta_{3}\left(X_{3}-\bar{X}_{3}\right)+u \\
& \frac{Y-\bar{Y}}{S_{y}}=\frac{\beta_{1}-\left(\bar{Y}-\beta_{2} \bar{X}_{2}-\beta_{3} \bar{X}_{3}\right)}{S_{y}}+\frac{\beta_{2}\left(X_{2}-\bar{X}_{2}\right)}{S_{y}}+\frac{\beta_{3}\left(X_{3}-\bar{X}_{3}\right)}{S_{y}}+\frac{u}{S_{y}} \\
& \text { e) } Y^{*}=\frac{\beta_{1}-\left(\bar{Y}-\beta_{2} \bar{X}_{2}-\beta_{3} \bar{X}_{3}\right)}{S_{y}}+\frac{\beta_{2} S_{x_{2}}\left(X_{2}-\bar{X}_{2}\right)}{S_{y} S_{x_{2}}}+\frac{\beta_{3} S_{x_{3}}\left(X_{3}-\bar{X}_{3}\right)}{S_{y} S_{x_{3}}}+\frac{u}{S_{y}} \\
& Y^{*}=\beta_{1}^{*}+\beta_{2}^{*} X_{2}^{*}+\beta_{3}^{*} X_{3}^{*}+\frac{u}{S_{y}} \\
& \hat{\beta}_{2}^{*}=\frac{b_{2} S_{x_{2}}}{S_{y}}, \quad \hat{\beta}_{3}^{*}=\frac{b_{3} S_{x_{3}}}{S_{y}}, \quad \hat{\beta}_{1}^{*}=\frac{b_{1}-\left(\bar{Y}-b_{2} \bar{X}_{2}-b_{3} \bar{X}_{3}\right)}{S_{y}}=\frac{b_{1}-b_{1}}{S_{y}}=0 \\
& \beta_{2}^{*}=\frac{.5 \cdot \sqrt{50}}{\sqrt{20.75}}=.776151, \quad \beta_{3}^{*}=\frac{-.25 \cdot 10}{\sqrt{20.75}}=-.548821 \\
& V\left(\hat{\beta}_{2}^{*}\right)=\frac{50}{14 \cdot 20.75}=.172117, \quad V\left(\hat{\beta}_{3}^{*}\right)=\frac{100}{28 \cdot 20.75}=.172117 \\
& t_{\beta_{2}^{*}}=\frac{.776151}{\sqrt{.172117}}=1.87083, \quad t_{\beta_{3}^{*}}=\frac{-.548821}{\sqrt{.172117}}=-1.32288
\end{aligned}
$$

2. $Y=\beta_{1}+\beta_{2} X+u$

$$
\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}=10-.5 \cdot 20=0
$$

a) $\hat{\beta}_{2}=\frac{6000-25 \cdot 10 \cdot 20}{12000-25 \cdot 20^{2}}=\frac{1000}{2000}=.5$

$$
E\left(Y_{0}\right)=.5 \cdot 25=12.5
$$

$$
V\left[\hat{E\left(Y_{0}\right)}\right]=\frac{\hat{\sigma}^{2}}{25}\left[\left[\begin{array}{ll}
1 & 25
\end{array}\right]\left[\begin{array}{cc}
6 & -.25 \\
-.25 & 1 / 80
\end{array}\right]\left[\begin{array}{c}
1 \\
25
\end{array}\right]\right]=\frac{43.4783}{25} \cdot \frac{105}{80}=2.28261
$$

$$
\hat{\sigma}^{2}=\frac{1500-.5 \cdot 1000}{23}=43.4783
$$

c) To compute the variance of $\hat{\theta}_{0}$, use the above formula but change X to (X-25) which is the new regressor in (5). $V\left(\hat{\theta}_{0}\right)=43.4783 \cdot \frac{21}{400}=2.28261$
d) There is more than one way to skin a cat. We can use brute force or a simple reparameterization to obtain the information that we want.
3.

	Number	Wage
Male	n_{1}	\bar{Y}_{1}
Female	n_{2}	\bar{Y}_{2}
Total	n	\bar{Y}

Note: $\bar{Y}=\left(n_{1} \bar{Y}_{1}+n_{2} \bar{Y}_{2}\right) / n$
Model A: $Y=\beta_{1}+\beta_{2} D_{F}+u$ (1) where D_{F} is the female dummy variable.
Model B: $Y=\gamma_{1} D_{M}+\gamma_{2} D_{F}+v$ (2) where D_{M} is the male dummy and there is no intercept in (2).
a) First set up the X and then the $X^{\prime} X$ matrix (2x2). Then solve for the intercept and the slope coefficients.

$$
\begin{aligned}
& \hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{D}_{F}=\bar{Y}-\left(\bar{Y}_{2}-\bar{Y}_{1}\right) \frac{n_{2}}{n}=\bar{Y}_{1} \\
& \hat{\beta}_{2}=\frac{n \cdot n_{2}\left(\bar{Y}_{2}-\bar{Y}\right)}{n \cdot n_{2}-n_{2}^{2}}=\frac{n_{1} \cdot n_{2}\left(\bar{Y}_{2}-\bar{Y}_{1}\right)}{n_{1} \cdot n_{2}}=\left(\bar{Y}_{2}-\bar{Y}_{1}\right)
\end{aligned}
$$

The slope coefficient is the difference, on average, between the wages of males and females. The intercept is just the average wage for a male, which is the best that we can say about a males wage if we know nothing else about him.
b) $\left[\begin{array}{l}\hat{\gamma}_{1} \\ \hat{\gamma}_{2}\end{array}\right]=\left[\begin{array}{cc}1 / n_{1} & 0 \\ 0 & 1 / n_{2}\end{array}\right]^{-1}\left[\begin{array}{l}n_{1} \bar{Y}_{1} \\ n_{2} \bar{Y}_{2}\end{array}\right]=\left[\begin{array}{l}\bar{Y}_{1} \\ \bar{Y}_{2}\end{array}\right]$

The male slope coefficient is the wage, on average, of being a male and the slope coefficient for the female is the wage, on average, of being a female compared to a male. The difference between the two represents the expected difference between wages of males and females.
c) The two models give the same results. In both models we say a male gets his average wage and that a female gets her average wage. They may look the same but they produce the same results.
d) The interpretation of the slope coefficient from (1) will not change although its value most likely will. That coefficient will still represent the average disparity between the wage paid to a man and paid to a woman.

