Econometrics 1
Assignment \#1

1. If $X_{1}, x_{2}, \ldots, x_{n}$ are values of a random sample of size n from a population having the density function

$$
\begin{aligned}
& \text { Lensity function } \\
& f(x ; \theta)=\left\{\begin{array}{cl}
\frac{2(\theta-x)}{\theta^{2}} & \text { for } 0<x<\theta \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

find the ML estimator of θ.
2. Given a random sample of size n from a population haring the density function

$$
f(x ; \theta)=\left\{\begin{array}{cl}
(\theta+1) x^{\theta} & \text { for } 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$ find the ML estimator of θ.

3. (This is a modification of Exercise 9.4 in your text.) Consider the joint distribution of two random variables, y, which is the number of failures of some component (disk drive) in a brand of computer per unit of time and x, the average lifetime of some different but related component (a chip). Note that y is a discrete random variable and x is a continuous random variable. Suppose that the conditional distribution of y is

$$
f(y \mid x)=e^{-\beta x}(\beta x)^{y} / y!, y=0,1, \ldots, x \geq 0, \beta>0
$$

while the marginal distribution of x is

$$
f(x)=\theta e^{-\theta x}, x \geq 0, \theta>0
$$

Thus, conditioned on x, y has a Poisson distribution with parameter βx, while x, unconditionally, has an exponential distribution.
a. What is the joint distribution of these two random variables, $f(y, x)$? (Hint, Equation (3-61) is a fundamental result in distribution theory.)
b. Show that the unconditional density of y is $f(y)=\delta(1-\delta)^{y}$ where $\delta=\theta /(\beta+\theta)$ by using result (3-45).
c. Show that $\mathrm{E}[x]=1 / \theta$ and $\operatorname{Var}[x]=1 / \theta^{2}$. [Hint: See Section 3.4 .5 of your text. (Note the typo in (3-39); $x \leq 0$ should be $x \geq 0$.) In case they are useful, gamma integrals which are used to obtain these results are discussed on pages 178-179 of your text.]

For a Poisson distribution with parameter α for some discrete random variable $z, f(z)=e^{-\alpha} \alpha^{z} / z!, \mathrm{E}[z]=$ $\operatorname{Var}[z]=\alpha$. It follows then, that in our conditional distribution,

$$
\mathrm{E}[y \mid x]=\operatorname{Var}[y \mid x]=\beta x .
$$

Note that this "regression" model has a linear conditional mean function. You could obtain E $[y]$, Var[$[y]$, and $\operatorname{Cov}[y, \mathrm{x}]$ from the marginal distribution $f(y)$ and the joint distribution $f(x, y)$ by summing and integrating using the definitions. But, there is a much easier way.
d. Using the fundamental results:

$$
\mathrm{E}[y]=\mathrm{E}_{x}[\mathrm{E}[y \mid x]], \quad \operatorname{Var}[y]=\mathrm{E}_{x}[\operatorname{Var}[y \mid x]]+\operatorname{Var}_{x}[\mathrm{E}[y \mid x]], \operatorname{Cov}[x, y]=\operatorname{Cov}[x, \mathrm{E}[y \mid x]]
$$

show that $E[y]=\beta / \theta=\gamma, \operatorname{Var}[y]=\beta / \theta+(\beta / \theta)^{2}=\gamma(1+\gamma)$, and $\operatorname{Cov}[x, y]=\beta / \theta^{2}=\gamma / \theta$.
e. Now, we consider the conditional distribution of x. Show that the regression of x on $y, \mathrm{E}[x \mid y]$, is given by the linear function

$$
\mathrm{E}[x \mid y]=\mu+\mu y \text { where } \mu=1 /(\beta+\theta)
$$

(note that the constant equals the slope). Hints: You have $f(y, x)$ and $f(y)$. Then, $f(x \mid y)$ is just $f(y, x) f f(y)$. In this ratio, cancel some terms, gather the remainder, and use the relationship between factorials and gamma integrals given on page 178. Now, show that the resulting conditional distribution is a gamma distribution using the results in Section 3.4.5. The mean of this distribution is the conditional mean you seek. This is also given in Section 3.4.5.
4. The Poisson distribution can be defined as the limit of a Binomial distribution as $n \rightarrow \infty$ and $\theta-0$ such that $n \theta=\lambda$ is a positive constant. For example, this could be the probability of a rare disease and we are random sampling a large number of inhabitants, or it could be the rare probability of finding oil and n is the large number of drilling sights. This discrete probability function is given by

$$
f(X ; \lambda)=\frac{e^{-\lambda} \lambda^{X}}{X!} \quad X=0,1,2, \ldots
$$

For a random sample from this Poisson distribution
a. Show that $\mathrm{E}(\mathrm{X})=\lambda$ and $\operatorname{var}(\mathrm{X})=\lambda$.
b. Show that the MLE of λ is $\hat{\lambda}_{\text {mice }}=\overline{\mathrm{X}}$.
c. Show that the method of moments estimator of λ is also $\overline{\mathrm{X}}$.
d. Show that $\overline{\mathrm{X}}$ is unbiased for λ.

- -

e 1. Derive the Cramér-Rao lower bound for any unbiased estimator of λ. Show that $\overline{\mathrm{X}}$ attains that bound.
5. The Exponential distribution is given by

$$
f(X ; \theta)=\frac{1}{\theta} e^{-X / \theta} \quad X>0 \text { and } \theta>0
$$

This is a skewed and continuous distribution defined only over the positive quadrant.
a. Show that $E(X)=\theta$ and $\operatorname{var}(X)=\theta^{2}$.
b. Show that $\hat{\theta}_{\text {mle }}=\bar{X}$.
\&.Sho the the of mementore $\overline{\mathrm{X}}$.
C d. Show that \bar{X} is an unbiased enemertimator of θ.
d.1 Derive the Cramer-Rao lower bound for any unbiased estimator of θ ? Is $\overline{\mathrm{X}}$ MVU for θ ?

