Spring 2007

1. No regression $\frac{R^{2} /(K-1)}{\left(1-R^{2}\right) / n-k} \sim F_{k-1}, n-k$
(i)

Model 1: $\quad \frac{.956 / 2}{(1-.956) / 23}=249.86$
Model 3: $\quad \frac{.75 / 1}{(1-.75) / 24}=72$
(i) $\frac{\left(e_{1}^{\prime} e_{1}-e^{\prime} e\right) / \# \text { rest }}{e^{l e} / d \cdot f} \sim F_{\text {\#irest, def. }}$

$$
\frac{(2.37-1.82) / 1}{(1.82) / 23}=6.95 \text { compare with } F_{1,23}
$$

(ii) $\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / \# \text { nest }}{\left(1-R_{u r}^{2}\right) / d f}=\frac{(.956-.94) / 1}{(1-.956) / 23}=8.36$

Compare with $F_{1,23}$
TWo tests should be identical. Somettion wrong wits the number.

$$
\frac{e^{\prime} e_{r}-e^{\prime} e}{e^{\prime} e}=\frac{\frac{e_{1}^{\prime} e_{1}}{y^{\prime} y}-\frac{e^{\prime} e}{y^{\prime} y}}{e^{\prime} e / y^{\prime} y}=\frac{1-R_{r}^{2}-\left(1-R_{u r}^{2}\right)}{1-R_{u r}^{2}}=\frac{R_{u r}^{2}-R_{r}^{2}}{1-R_{u r}^{2}} .
$$

(iv) No. The dependent variables in the restricted and unrestricted modes should be the same. This is not the case in (3). That is, one cant compare (3) with (1). you can do a t-test $=\frac{b_{2}+b_{3}-1}{\operatorname{se}_{2}\left(b_{2}+b_{3}\right)}=\frac{\cdot 76+\cdot 24-1}{\sqrt{V\left(b_{2}\right)+v\left(b_{3}\right)+2 \cos \left(b_{2}, b_{3}\right)}}$ $\operatorname{Cor}\left(b_{2}, b_{3}\right)$ not given. But the numerator is zero. So the t value $=0$. Compare this wist $t_{23, \alpha}$. will reject.
2. $\quad y^{*}=\binom{y}{-y}, \quad x^{*}=\left(\begin{array}{cc}2 & x \\ 2 & -x\end{array}\right)$
(i) $2 n \times 1$

$$
\left.\begin{array}{rl}
b^{*} & \left.\begin{array}{l}
b^{*}=\left(\begin{array}{l}
\left.b_{0}\right) \\
(k+1) x_{1} \\
b_{k}
\end{array}\right) \\
b
\end{array}\right)= \\
\left(x^{*^{\prime}} x^{*}\right)^{-1} x^{*} y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 n & 0 \\
0 & 2 x^{\prime} x
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
2 x^{\prime} y
\end{array}\right] .\left(\begin{array}{cc}
0 \\
0 & \frac{1}{2}(x x)^{-1}
\end{array}\right]\left(\begin{array}{cc}
\frac{1}{2 n} & 0 \\
2 x^{\prime} y
\end{array}\right)=\binom{0}{\left(x^{\prime} x\right)^{-1} x^{\prime} y}=\binom{0}{b} .
$$

\Rightarrow The slope cores of the reg y^{*} on x^{*} are nothip but the reg. are of y on x (witoont an intercept).
(ii)

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{e^{+} e^{*}}{2 n-(k+1)}=\frac{2 e^{\prime} e}{2 n-(k+1)}=\frac{2\left(\frac{e^{\prime} e}{n-k}\right) \cdot \frac{n-k}{2 n-(k+1)}}{} \begin{array}{l}
\because e^{*}=y^{*}-x^{*} b^{*}=\left[\begin{array}{c}
Y \\
-y
\end{array}\right]-\left[\begin{array}{c}
x b \\
-x b
\end{array}\right]=\binom{e}{-e} . \\
V(b)=\sigma^{2} \cdot \frac{1}{2}\left(x^{\prime} x\right)^{-1} \\
\Rightarrow \hat{V}(b)=\hat{\sigma}^{2} \cdot \frac{1}{2}\left(x^{\prime} x\right)^{-1}=s^{2}(x x)^{-1} \frac{n-k}{2 n-(k+1)}=V\binom{\text { us-estmator }}{7 y m x} . \\
\end{array} . \frac{n-k}{2 n-(k+1)}
\end{aligned}
$$

3.

$$
\begin{aligned}
b_{R}=\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y & =\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime}\left(x_{1} b_{1}+x_{2} b_{2}+e\right) \\
& =b_{1}+p b_{2}+\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} e \\
& =b_{1}+p b_{2}
\end{aligned}
$$

4.

@

$$
\begin{aligned}
& Y=(2 x)\binom{\beta_{1}}{\beta_{2}}+u \\
& b=\binom{b_{1}}{b_{2}}=\left(\begin{array}{cc}
n & i^{\prime} x \\
x^{\prime} 2 & x^{\prime} x
\end{array}\right)^{-1}\binom{z^{\prime} y}{x^{\prime} y}=\left[\begin{array}{c}
n \\
\Sigma x \\
\Sigma x \\
\Sigma x^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\Sigma y \\
\Sigma x y
\end{array}\right] \\
& \text { where } D=n \sum x^{2}-\Sigma x \Sigma y=n \sum x^{2} \\
& \left.\Rightarrow\binom{b_{1}}{b_{2}}=\left[\frac{\bar{y} \Sigma x^{2}-\bar{x} \Sigma x y}{\sum x^{2}}\right] \frac{\Sigma x \bar{y}-n \bar{x}}{\Sigma x^{2}}\right]=\left[\frac{\bar{y}\left(\sum x^{2}+n \bar{x}^{2}\right)-\bar{x}(\Sigma x y+n \overline{x y})}{\Sigma x^{2}}\right] \\
& =\binom{\bar{y}-\bar{x} \cdot b_{2}}{b_{2}} \text { whes } b_{2}=\frac{\Sigma x y}{\overline{z x}} \text {. } \\
& V\binom{b_{1}}{b_{2}}=\sigma^{2}\left[\begin{array}{l}
n \\
\Sigma x \\
\Sigma x^{2}
\end{array}\right]^{-1}=\sigma^{2}\left[\begin{array}{cc}
\frac{\Sigma x^{2}}{D} & -\frac{\Sigma x}{D} \\
\frac{-\Sigma x}{D} & \frac{n}{D}
\end{array}\right] \\
& \Rightarrow \quad v\left(b_{2}\right)=\frac{\sigma^{2}}{\Sigma x^{2}}, \quad v\left(b_{1}\right)=\frac{\Sigma x^{2}}{n \Sigma x^{2}}, \operatorname{cor}\left(b_{1}, b_{2}\right)=\frac{-\bar{x}}{\Sigma x^{2}} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x_{0}^{\prime}=\left(\begin{array}{ll}
1 & c
\end{array}\right) \\
& \Rightarrow x_{0}^{\prime}\left(x^{\prime} x\right)^{-1} x_{0}=\left(\begin{array}{ll}
1 & c
\end{array}\right)\left[\begin{array}{cc}
\frac{\Sigma x^{2}}{D} & -\frac{\Sigma x}{D} \\
-\frac{\Sigma x}{D} & \frac{n}{D}
\end{array}\right]\binom{1}{c} \\
&=\frac{\Sigma x^{2}}{D}-2 c \frac{\Sigma x}{D}+\frac{n c^{2}}{D}=\frac{\Sigma x^{2}}{n \Sigma x^{2}}-\frac{2 c \bar{x}}{\Sigma x^{2}}+\frac{c^{2}}{\Sigma x^{2}} \\
&=\frac{1}{n}+\frac{n \bar{x}^{2}}{n \Sigma x^{2}}-\frac{2 c \bar{x}}{\Sigma x^{2}}+\frac{c^{2}}{\Sigma x^{2}}=\frac{1}{n}+\frac{\left(c-x^{2}\right.}{\Sigma x^{2}} .
\end{aligned}
$$

