Ceon616 HWH2
before you proceed with stadying this answoricey cheak pages p32 (moterix iveases) und pages 231-233 peddeml

$$
\begin{aligned}
\text { rodel }: y & =x \beta+\varepsilon \Rightarrow \hat{p}=\left(x^{\prime} x\right)^{-1} x y \Rightarrow \operatorname{Var}(\hat{\beta})=\operatorname{Var}\left((x x)^{-1} x^{\prime} y\right)= \\
& =\sigma^{2}\left(x^{\prime} x\right)^{-1} \text { thisise uater } x
\end{aligned}
$$

$$
\Rightarrow \operatorname{Var}\binom{\hat{\beta}}{1}=\operatorname{Var}\binom{\hat{\beta} x}{\hat{\beta} z}=\sigma^{2}\left[\begin{array}{ll}
\dot{x} x & x^{2} \\
\dot{z} x & z^{2}
\end{array}\right]
$$

consider was orly $\hat{\beta} x=\left(X^{\prime} M_{2} x^{\prime}\right)^{-1}$ 'Mzy

$$
\operatorname{Kar}(\hat{\beta} x)=\operatorname{Var}\left(\left(X_{X} M_{z} X^{-1} X^{\prime} M_{z} y\right)=\sigma^{2}\left(X^{\prime} M_{z} X\right)^{-1}\right.
$$

this is e mateix too

- sssume Huat sueiance of E inboth nodels is the same
- If $A-B$ is PSD matrix then $A^{-1}-B^{-1}$ is NSD mateix

$$
\Rightarrow[\operatorname{krr}(\hat{\beta})]^{-1}[\operatorname{lar}(\hat{\beta} x)]^{-1}=\lambda / \rho^{2} z\left(z^{2} z\right)^{-1} z^{\prime}
$$

$1 s^{2}>0$ and $q^{\prime} z(z \mid z)^{\prime \prime} z^{\prime} q$ isa quanaatic form (qis arbitraly choosen vector): is positive this $\left.2(* 2)^{-1}\right)$ is FSD.
thus $\operatorname{Var}(\hat{\beta} x)$-Var $(\hat{\beta})$ is $P S D$.
madell: $y=x p+\varepsilon \Rightarrow{ }^{\text {aresidut maxes " } M_{x}=I-x(X x)^{-1} x}{ }^{\prime}$
\Rightarrow vector ef residuds $e_{x}=M_{x} Y$
unodel $2: y=z \gamma+\varepsilon \Rightarrow$ "aresidenal wover" $\left.M_{z}=I-Z\left(z^{\prime} z\right)\right)^{\prime}$
\Rightarrow vector of pesiduals $e_{z}=M z y$
$\partial=x p \rightarrow$ sibshitute thisinto e z

$$
\begin{aligned}
& e_{z}=M_{z} y=\left(I-(x p)((x p)(x p))^{-1}(x p)^{-}\right) y- \\
& =\left(I-(x P)\left(P x^{\prime} x p\right)^{-1}\left(P^{\prime} x^{\prime}\right)\right) y=\left(I-x p p^{-1}(x X)^{-1}(p)^{-1} p x^{\prime}\right) y \\
& =\left(I-x\left(x^{\prime} x\right)^{-1} x\right)^{\prime} y=e_{x}
\end{aligned}
$$

Conclusion chaugimanits of meosurement of x has no effect on the fit of the wodul.
problem 3
unodel $y=x_{1} \beta_{1}+x_{2} \beta_{1}+\varepsilon$ where $E(\varepsilon)=x_{1} \gamma$
define a new erooe teem $V=\varepsilon-E(\varepsilon) \Rightarrow \varepsilon=V+E(\varepsilon)$ V is uncorrelated with $\left(x_{1} x_{2}\right)$

$$
\begin{aligned}
& y=x_{1} \beta_{1}+x_{2} \beta_{2}+V+E(\varepsilon)=x_{1} \beta_{1}+x_{2} \beta_{2}+V+x_{1} \gamma= \\
& =x_{1}\left(\beta_{1}+\gamma\right)+x_{2} \beta_{2}+V=x \beta+V \text { where } \\
& \beta=\binom{p_{1}+r}{\beta_{2}} \quad X=\left(x_{1} x_{2}\right) \text { to mave long stayshoit on } \\
& E(\hat{\beta})=E\binom{(\hat{\beta}+8)}{\beta_{2}} \neq\binom{\beta_{1}}{\beta_{2}}
\end{aligned}
$$

problem 4
unode $Y=x_{p}+\varepsilon$ whese $x=\left[\begin{array}{ll}* & \left.X_{x}\right]\end{array}\right]$

- leto consider $\beta \times$ fiest: $0_{0} p_{p x}=\left(X_{*}^{\prime} M_{0} X_{x}\right)^{-1} X_{*}^{\prime} M_{0}$ | where $\left.M_{0}=I-z\left(P^{\prime} \tau\right)^{-10}\right)$ is spumetrie and idempotert \Rightarrow

$$
\begin{aligned}
& \hat{p}_{1} x_{i}\left(\left(X_{N}^{M_{0}^{\prime}}\right)\left(M_{0} X\right)\right)^{-1}\left(X^{\prime} M_{0}^{\prime} M_{0} y\right)=\left[\left(\left(M_{Z}\right)^{\prime} M_{0}\right)\left(M_{0} M_{0} Z\right)^{-1}\right]^{-1} \\
& \left.\times\left((M z)^{\prime} M_{0}^{\prime} M_{0} y\right)^{\prime}=\left[z^{\prime} M_{0}^{\prime} M_{0} M_{0} M_{0} z\right]^{-1} \times\left(Z^{\prime} M_{0}^{\prime} M_{0}^{\prime} M_{0} y\right)^{\prime}\right)= \\
& =\left(\left({ }^{2} \mu_{0}^{\prime}\right)\left(M_{0} z\right)\right)^{-1}\left(\left(z^{\prime} M_{0}^{\prime}\right) y\right)^{p+1 t o g}= \\
& =\left(X_{*}^{\prime} X_{*}\right)^{-1}\left(X^{\prime} * y^{\prime}\right)
\end{aligned}
$$

- now cansider 卢p fiost it the womul equation's (0-24) ingouene giveso aleadyinawiation
intritiody taxing a creecese of something ailecoudy it veais deviotion form paxiures 2tro consider the teem $i^{\prime} X_{k}=i\left(\pm-i(i i i)^{-10} i\right) z=$

$$
\begin{aligned}
& =i^{2} 1 z-i(i(p))^{-10} 2=i z-i z=0 \text { uateix } \\
& \left.000=(8) i)^{-1} i\right) y-0=(i i i)^{-1 i} i y=\bar{y}
\end{aligned}
$$

prodlem5 wodel $y=\left(x_{1} x_{2}\right)\binom{\beta_{1}}{\beta_{2}}+u$
(a) trom X ' X followisthet X, and X_{2} are not corpeloted apply norunal equations ($6-24$. for example)
(i)

$$
\begin{aligned}
& \hat{\beta}=\binom{\hat{\beta}_{1}}{\hat{p}_{2}}^{-1}=\left[\begin{array}{cc}
x_{1} x_{1} & 0 \\
0 & x_{2}^{\prime} x_{2}
\end{array}\right]^{-1}\binom{x_{1} y}{x_{2} y} \Rightarrow \hat{\beta}_{1}=\left(x^{\prime}, x_{1}\right)^{-1} x_{y}^{\prime} y-\left(\dot{x}_{1} x_{1}\right)^{-1} x_{1}^{\prime} x_{2} \hat{\beta}= \\
& =\left(\dot{x}_{1} x_{1}\right)^{-1} x_{1}^{\prime} y-0=\left(x_{1} x_{1}\right)^{-1} \dot{x}_{1} y
\end{aligned}
$$

${ }^{\text {o }}$ y aunalogy $\beta_{2}=\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{1} y-\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} x_{1} \beta_{1}=$

$$
=\left(x_{2}^{\prime} x_{2}\right)^{-1} x_{2}^{\prime} 4-0=\left(x^{1} 2 x_{2}\right)^{-1} x_{2} y
$$

(ii) modell $Y=X_{1} p_{1}+\varepsilon \Rightarrow 己=M_{x,} y$ where $M_{x_{1}}$ isor resichal uaver $M_{x_{1}}=\left(-X_{1}\left(X_{1} X_{1} j^{-1} X_{1}\right)\right.$
model2

$$
\begin{aligned}
& \tilde{e}=x_{2} \beta 2+r \\
& \left.\hat{\beta} 2=\left(x_{2}^{\prime} x_{2}\right)^{-1} X_{2}^{\prime} \widetilde{e}=x_{2}^{\prime} x_{2}\right)^{-1} X_{2}^{\prime}\left(I-X_{1}\left(x_{1}^{\prime} x_{1}, x_{1}^{\prime \prime}\right) y^{\prime}\right.
\end{aligned}
$$

oper bracerets ow

$$
\left.=\left(X_{2} X_{2}\right)^{-1} X_{2}^{\prime} y-\left(X_{2} X_{2}\right)^{-1}{\underset{2}{\prime}}_{2}^{\prime} X_{1} X_{1}^{\prime} X_{1} X_{1}\right)^{-1} X_{1}^{\prime} y=\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2} y-0=
$$

$$
=\left(X_{2} X_{2}\right)^{-1} X_{2}^{\prime} y \text { as betore in(I) }
$$

alsofrom uodel's $\hat{\beta}_{1}=\left(X_{1}^{\prime}, X_{1}\right)^{-1} X_{1}^{\prime} y$ asbefore in 3
the Results are the same beoanse X_{1} and X_{2} are not correlated. otheewise since $x_{1} x_{2}$ and $X_{2}{ }_{2} X_{1}$ will nolomper be zeso unatreices this sesuet doesn't had.
peoblem 5
(b+C) yet ugoin the samer resuet asiv (a) part (ii).
(d) model $1 y=x p t e$
madel $2 y=\left(\begin{array}{l}x \\ x\end{array} p_{n+1}\right.$
$x \sim$ row effobseerations
yo back to duapter 2 in breene .00

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{p}_{n}\right)=\sigma^{2}\left(x^{\prime} x\right)^{-1} \\
& \operatorname{Var}\left(\hat{p}^{n+1}\right)=\sigma^{2}\left(x^{\prime} x+x x^{\prime}\right)^{-1} \\
& \text { assume the same veruns }
\end{aligned}
$$

- assuuve the same vorunce sof erroriterms
- if $A-B$ is PSO then $A^{-1}-B^{-1}$ is NSO

$$
\begin{aligned}
& \left.\left[\operatorname{Var}\left(\hat{\beta}_{n+1}\right)\right]^{-1}-\operatorname{Var}\left(\hat{\beta}_{n}\right)\right]^{-1}=\ln / \beta^{2}\left(x^{\prime} x+x x^{\prime}\right)-1 / \beta^{2}\left(x^{\prime} x\right)= \\
& =1 / \alpha^{2} x x^{\prime} \quad 1 / /^{2}>0 \text { and } x x^{\prime} \text { is } \\
& (\mid x k)(k x \mid)=(|x|) \text { ga numbere poative }
\end{aligned}
$$

thus $\operatorname{Var}\left(\hat{\beta}_{n+1}\right)-\operatorname{Var}\left(\hat{p}_{n}\right)$ is NSO
conclusion additiona paw of doservations Reduces variance
peoblem.

$$
\begin{aligned}
& \text { uodel } y=i p_{i}+x p+\varepsilon \\
& \hat{\rho}=\left(X^{\prime} M_{0} X\right)^{\prime} X^{\prime} M_{0} Y \\
& \text { whene } M_{0}=\left(I-i(2 / 2)^{-1} i^{1}\right) \text { summetric/idemp. } \\
& \left.=\left(\left(M_{0} X\right)^{\prime}, M_{0} X\right)\right)^{-1}\left(M_{0} X\right)^{1} M_{0} y \Rightarrow \Rightarrow \text { inderiation torem }
\end{aligned}
$$

$$
=\left(x^{\prime} x\right)^{-1} x^{\prime} y
$$

unich is OLS estimator frem repression of y on x (ie y und Xiw meanderiationform)
get yaurself a cave it you got that formo

Econ616

Homework \#2
Correction to the answer key

Question 5d

Model $1 \mathrm{y}=\mathrm{X} \beta_{\mathrm{n}}+\varepsilon$
where X is $n x k$
$b_{n}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$
$\operatorname{Var}\left(b_{n}\right)=\sigma^{2}\left(X^{\prime \prime} X\right)^{-1}$
Model $2 \mathrm{y}=\mathrm{X} * \beta_{\mathrm{n}+1}+\varepsilon$
where X^{\star} is $(n+1) x k$
$X^{*}=\left[\begin{array}{l}X \\ X\end{array}\right]$ so that $X^{*} X^{*}=\left[\begin{array}{ll}X & x\end{array}\right] \cdot\left[\begin{array}{l}X \\ x\end{array}\right]=\left(X^{\prime} X+x^{\prime} x\right)$
note that $x^{\prime} x$ is a matrix of the dimension kxk - the same dimension as $X^{\prime} X$ $\mathrm{b}_{n+1}=\left(X^{*} X^{*}\right)^{-1} X^{*} y$
$\operatorname{Var}\left(b_{n+1}\right)=\sigma^{2}\left(X^{* \prime} X^{*}\right)^{-1}=\sigma^{2}\left(X^{\prime} X^{\prime}+x^{\prime} X\right)^{-1}$

Solution

Assume that the variances of the error terms are the same
$\operatorname{Var}\left(b_{n+1}\right)^{-1}-\operatorname{Var}\left(b_{n}\right)^{-1}=1 / \sigma^{2}\left[\left(X^{\prime} X+x^{\prime} x\right)-\left(X^{\prime} X\right)\right]=1 / \sigma^{2}\left[x^{\prime} x\right]$
$1 / \sigma^{2}>0$ and $q^{\prime} x^{\prime} x q>0$ since it is a quadratic form (q is a vector) thus the difference is PSD
then it must be that $\operatorname{Var}\left(\mathrm{b}_{n+1}\right)-\operatorname{Var}\left(\mathrm{b}_{n}\right)$ is $N S D$.

