Econ616

Homework \#4
Answer key to selected questions
Question 2
Model $1 \log (Y)=\gamma+\delta \log (X)+\varepsilon$
Model $2 \log (X)=\alpha+\beta \log (Y)+\varepsilon$
Define variables $x: \log (X)$ in mean deviation form and $y: \log (Y)$ in mean deviation form.
(b) $d=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}^{2}}$ and $b=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$ and thus $d / b=\frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} \neq 1$
(c) The regressor is assumed not to be correlated with an error term.
(d) $R^{2}=\frac{\sum_{i=1}^{n} \hat{y_{i}^{2}}}{\sum_{i=1}^{n} y_{i}^{2}}=\frac{d^{2} \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}=\frac{d \sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}^{2}}=d \cdot b$
(e) Define a variable $X^{*}=p X$, where X denotes En and apply the above formulas. The rest follows...

Question 3

Model 1 En $=\alpha+\beta$ RGDP $+u$
Model 2 En*= β RGDP*+u*
Model 2 is Model 1 in mean deviation form.
Define $Y=E n$ and $X=R G D P$, small x and y denote respective variables in mean deviation form.

Solution

(a) Model 1 OLS regression gives $b_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}^{2}}$

Model 2 OLS through the origin gives $b_{2}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}^{2}}$
Thus $\mathrm{b}_{1}=\mathrm{b}_{2}$.
(b)

$$
\begin{aligned}
& \text { Model 1 } R_{1}^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\frac{\sum_{i=1}^{n} y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} \\
& \text { Model } 2 R_{2}^{2}=\frac{\sum_{i=1}^{n} y_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}
\end{aligned}
$$

Since $b_{1}=b_{2}$ predicted y will be the same in both models thus $R_{1}^{2}=R_{2}^{2}$.

Question 4

Model $1 \mathrm{En}=\alpha+\beta$ RGDP +u

Model 2 En ${ }^{*}=\beta$ RGDP*+ \mathbf{u}^{*}
Model 3 En= β RGDP+u
Define $Y=E n$ and $X=R G D P$, small x and y denote respective variables in mean deviation form.
(a) Model 3 OLS through the origin gives $b_{3}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} Y_{i}^{2}} \neq b_{1}=b_{2}$
(b) Model $3 R_{3}^{2}=\frac{\sum_{i=1}^{n} \hat{Y}_{i}^{2}}{\sum_{i=1}^{n} Y_{i}^{2}}$ First, note $R_{1}^{2}=R_{2}^{2} \neq R_{3}^{3}$. Second, note that $\mathrm{TSS}_{3}=\sum_{i=1}^{n} Y_{i}^{2}$ and $\mathrm{TSS}_{1}=\mathrm{TSS}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{i}}{ }^{2}$ and thus $\mathrm{TSS}_{1}=\mathrm{TSS}_{2} \neq \mathrm{TSS}_{3}$. The coefficients of determination are not comparable.

Question 5

Model $\ln (C)=\beta_{1}+\beta_{2} \ln (P)+\beta_{3} \ln (Y)+u$

Solution

(b) $\beta_{2}+\beta_{3}=-1$ thus $\beta_{3}=-\left(1+\beta_{2}\right)$. One may rewrite the regression equation as follows $\ln (C)=\beta_{1}+\beta_{2} \ln (P)+\beta_{3} \ln (Y)+u$

```
ln}(C)=\mp@subsup{\beta}{1}{}+\mp@subsup{\beta}{2}{}\operatorname{ln}(P)+-(1+\mp@subsup{\beta}{2}{})\operatorname{ln}(Y)+
ln}(C)+\operatorname{ln}(Y)=\mp@subsup{\beta}{1}{}+\mp@subsup{\beta}{2}{}\operatorname{ln}(P)-\mp@subsup{\beta}{2}{}\operatorname{ln}(Y)+
ln(C\bulletY)= }\mp@subsup{\beta}{1}{}+\mp@subsup{\beta}{2}{}\operatorname{ln}(P/Y)+
```

Thus the restriction is built into the model.
(c) Built into the model one restriction at a time then reestimate the model and construct a F- test.
(i) $\beta_{3}=0$ and the model becomes
$\ln (C)=\beta_{1}+\beta_{2} \ln (P)+u$
(ii) see Question 5 (b)
(iii) $\beta_{3}=0$ and $\beta_{2}=-1$
$\ln (C)=\beta_{1}+\beta_{2} \ln (P)+\beta_{3} \ln (Y)+u$
$\ln (C)=\beta_{1}-\ln (P)+u$
$\ln (C \bullet P)=\beta_{1}+u$

