ECONOMICS 616
 EXAM 2
 Spring 2002

Total Points: 100
Time: 1 hour and 15 minutes

NOTE: Answer all questions. Show your work fully. GOOD LUCK!!

1. You have a sample of 15 observations that are grouped into 2 categories. The first group (identified by the dummy variable $\mathrm{D}_{1}=1$) has 5 observations and the second group (identified by the dummy variable $\mathrm{D}_{2}=1$) has 10 observations. (Note that $\mathrm{D}_{1}+$ $\mathrm{D}_{2}=1$). You have values of the dependent variable Y and an independent variable X for all 15 observations. You run several regressions and the results are reported as follows:

$$
\begin{align*}
& Y=-.07+.52 X, \quad R S S=6.56 \tag{1}\\
& Y=-.46 D_{1}+.55 D_{2}+.49 X, \quad R S S=3.49 \tag{2}\\
& Y=-.06 D_{1}+.4 D_{2}+.44 D_{1} * X+.51 D_{2} * X, \quad R S S=3.16 \tag{3}\\
& Y=.23+.4 D_{1} * X+.52 D_{2} * X, \quad R S S=3.33 \tag{4}
\end{align*}
$$

Part A: (Hint: All you need here is to identify the restricted and unrestricted regressions in each case).
i. How would you test for structural change (both intercept and slope) at the 5% level of significance? (8 points)
ii. How would you test for equality of slopes (assuming that intercepts are the same) at the 5% level of significance? (8 points)
iii. How would you test for equality of slopes (assuming that intercepts are different) at the 5% level of significance? (8 points)
iv. How would you test for equality of intercepts (assuming that slopes are the same) at the 5% level of significance? (8 points)
v. How would you test for equality of intercepts (assuming that slopes are different) at the 5% level of significance? (8 points)

Part B: Instead of running the regressions in (1)-(4) your friend estimated the following

$$
\begin{align*}
& Y=c_{0}+c_{2} D_{2}+c_{3} X+e_{2}, \quad R S S=3.49 \tag{2a}\\
& Y=b_{0}+b_{1} D_{2}+b_{2} X+b_{3} D_{2} * X+e_{1}, \quad R S S=3.16 \tag{3a}\\
& Y=f_{0}+f_{1} X+f_{2} D_{2} * X+e_{3}, \quad R S S=3.33 \tag{4a}
\end{align*}
$$

i. Use your results from (2) to calculate c_{0}, c_{1}, c_{2} for her in (2a). (5 points)
ii. Use your results from (3) to calculate b_{0}, b_{1}, b_{2} for her in (3a). (5 points)
iii. Use your results from (4) to calculate f_{0}, f_{1}, f_{2} for her in (4a). (5 points)
2. Let the true regression (in deviation form) be $y=\beta_{2} x_{2}+\beta_{3} x_{3}+u$ and the OLS estimates of the coefficients are b_{2} and b_{3}, respectively. However, one mistakenly excludes X_{3} from the regression and estimates the model (in deviation form) $y=\alpha_{2} x_{2}+v$. Let the OLS estimate of α_{2} from this misspecified model be a_{2}.
(a) Show that $a_{2}=b_{2}+b_{3} c_{32}$, where c_{32} is the slope coefficient of the regression X_{3} on X_{2}. (Hint: You may start from the relationship $y=b_{2} x_{2}+b_{3} x_{3}+e$ where e is the OLS residual). Can you generalize this result to the k regressors model? (8 points)
(b) Use the above result to show that $E\left(a_{2}\right)=\beta_{2}+\beta_{3} c_{32}$. (3 points)
(c) What happens to the bias when X_{3} and X_{2} are uncorrelated? How about hypothesis testing in this special case? (4 points)
3. Consider the following regression function

$$
\begin{equation*}
Y_{i}=\beta X_{i}+u_{i}, i=1, \ldots, n \tag{1}
\end{equation*}
$$

where $u_{i} \sim\left(0, \sigma^{2} X_{i}^{2}\right)$. Note that X is a scalar.
(i) Derive the GLS estimator of β and call it b_{G}. Show that b_{G} is consistent. (Note: state any assumptions you need to make). (12 points)
(ii) Consider two other estimators of β, viz.,
a. $\hat{b}=\bar{Y} / \bar{X}$, and
b. $\tilde{b}=\sum x_{i} y_{i} / \sum x_{i}^{2}$
where \bar{Y} and \bar{X} are sample means of Y and $X ; y$ and x are Y and X in deviation forms.

Show that \hat{b} and \tilde{b} are consistent. (Hint: use convergence in quadratic mean to prove your result. State any assumptions you need to make.) (18 points)

