ECONOMICS 616 EXAM 2 Spring 2002

Total Points: 100 Time: 1 hour and 15 minutes

NOTE: Answer all questions. Show your work fully. GOOD LUCK!!

1. You have a sample of 15 observations that are grouped into 2 categories. The first group (identified by the dummy variable $D_1=1$) has 5 observations and the second group (identified by the dummy variable $D_2=1$) has 10 observations. (Note that $D_1 + D_2 = 1$). You have values of the dependent variable Y and an independent variable X for all 15 observations. You run several regressions and the results are reported as follows:

Y =07 + .52X, RSS = 6.56	(1)
$Y =46D_1 + .55D_2 + .49X, RSS = 3.49$	(2)
$Y =06D_1 + .4D_2 + .44D_1 * X + .51D_2 * X, RSS = 3.16$	(3)
$Y = .23 + .4D_1 * X + .52D_2 * X, RSS = 3.33$	(4)

Part A: (Hint: All you need here is to identify the restricted and unrestricted regressions in each case).

- i. How would you test for structural change (both intercept and slope) at the 5% level of significance? (8 points)
- ii. How would you test for equality of slopes (assuming that intercepts are the same) at the 5% level of significance? (8 points)
- iii. How would you test for equality of slopes (assuming that intercepts are different) at the 5% level of significance? (8 points)
- iv. How would you test for equality of intercepts (assuming that slopes are the same) at the 5% level of significance? (8 points)
- v. How would you test for equality of intercepts (assuming that slopes are different) at the 5% level of significance? (8 points)

Part B: Instead of running the regressions in (1)-(4) your friend estimated the following

$$Y = c_0 + c_2 D_2 + c_3 X + e_2, \quad RSS = 3.49$$
(2a)

$$Y = b_0 + b_1 D_2 + b_2 X + b_3 D_2 * X + e_1, \quad RSS = 3.16$$
(3a)

$$Y = f_0 + f_1 X + f_2 D_2 * X + e_3, \quad RSS = 3.33$$
(4a)

- i. Use your results from (2) to calculate c_0, c_1, c_2 for her in (2a). (5 points)
- ii. Use your results from (3) to calculate b_0, b_1, b_2 for her in (3a). (5 points)
- iii. Use your results from (4) to calculate f_0, f_1, f_2 for her in (4a). (5 points)

2. Let the true regression (in deviation form) be $y = \beta_2 x_2 + \beta_3 x_3 + u$ and the OLS estimates of the coefficients are b_2 and b_3 , respectively. However, one mistakenly excludes X_3 from the regression and estimates the model (in deviation form) $y = \alpha_2 x_2 + v$. Let the OLS estimate of α_2 from this misspecified model be α_2 .

- (a) Show that $a_2 = b_2 + b_3 c_{32}$, where c_{32} is the slope coefficient of the regression X_3 on X_2 . (Hint: You may start from the relationship $y = b_2 x_2 + b_3 x_3 + e$ where *e* is the OLS residual). Can you generalize this result to the *k* regressors model? (8 points)
- (b) Use the above result to show that $E(a_2) = \beta_2 + \beta_3 c_{32}$. (3 points)
- (c) What happens to the bias when X_3 and X_2 are uncorrelated? How about hypothesis testing in this special case? (4 points)
- 3. Consider the following regression function

 $Y_i = \beta X_i + u_i, i = 1, ..., n \quad (1)$ where $u_i \sim (0, \sigma^2 X_i^2)$. Note that *X* is a scalar.

- (i) Derive the GLS estimator of β and call it b_G . Show that b_G is consistent. (Note: state any assumptions you need to make). (12 points)
- (ii) Consider two other estimators of β , viz.,
 - a. $\hat{b} = \overline{Y} / \overline{X}$, and b. $\widetilde{b} = \sum x_i y_i / \sum x_i^2$

where \overline{Y} and \overline{X} are sample means of *Y* and *X*; *y* and *x* are *Y* and *X* in deviation forms.

Show that \hat{b} and \tilde{b} are consistent. (Hint: use convergence in quadratic mean to prove your result. State any assumptions you need to make.) (18 points)