Econometrics 616 Exam I Spring 2004

Total Points: 100 Time: 1 hour and 30 minutes

Note: Answer all questions and show work when necessary. Good Luck!

You are given the following formulas:

Model:
$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$$
 (1)

The OLS estimators of β_2 and β_3 (denoted by b_2, b_3) are

$$b_{2} = \frac{\sum x_{3}^{2} \sum x_{2}y - \sum x_{2}x_{3} \sum x_{3}y}{\sum x_{2}^{2} \sum x_{3}^{2} - (\sum x_{2}x_{3})^{2}}$$
$$b_{3} = \frac{\sum x_{2}^{2} \sum x_{3}y - \sum x_{2}x_{3} \sum x_{2}y}{\sum x_{2}^{2} \sum x_{3}^{2} - (\sum x_{2}x_{3})^{2}}$$

where the lower case variables are mean deviation of the corresponding uppercase variable.

For the same model the variances of the estimators b_2 and b_3 are

$$V(b_{2}) = \frac{\sigma^{2} \sum x_{3}^{2}}{\sum x_{2}^{2} \sum x_{3}^{2} - (\sum x_{2}x_{3})^{2}}$$
$$V(b_{3}) = \frac{\sigma^{2} \sum x_{2}^{2}}{\sum x_{3}^{2} \sum x_{2}^{2} - (\sum x_{2}x_{3})^{2}}$$

1. You are given the following data matrix in deviation form $x'x = \begin{bmatrix} 50 & 60 \\ 60 & 100 \end{bmatrix}$ and

$$x' y = \begin{bmatrix} 10 \\ 5 \end{bmatrix}, y' y = 20.75 \text{ and } n = 20.$$

- a) Compute b_2, b_3 , and the estimated variances of b_2, b_3 . (6+8 points)
- b) Compute the **t-value** for testing the hypothesis $H_0: \beta_2 + \beta_3 = 0$. (4 **points**)

c) Denote $\delta = \beta_2 + \beta_3$ and rewrite the model in (1) as

$$Y = \beta_1 + \beta_2 \tilde{X}_2 + \delta X_3 + u \tag{2}$$

where $\tilde{X}_2 = X_2 - X_3$. Compute the **t-value** for testing the hypothesis $H_0: \delta = 0$ in (2). Do you get the same result as in 1(b)? (8 points)

d) Show that model in (1) can be written in a standardized form, viz., $Y^* = \beta_1^* + \beta_2^* X_2^* + \beta_3^* X_3^* + u/S_Y$ (3)

where the variables in asterisks are standardized. (3 points)

- (i) Find the OLS estimators of β_2^* and β_3^* . Also show that the OLS estimator of $\beta_1^* = 0$. (6 points)
- (ii) Compute the *estimated* variances of the OLS estimators of β_2^* and β_3^* as well as their t-values. (8 points)

(4)

2. Consider the simple regression model $Y = \beta_1 + \beta_2 X + u$

which is estimated using the following data.

$$\overline{Y} = 10, \quad \overline{X} = 20, \quad \sum XY = 6,000$$

 $\sum X^2 = 12,000, \quad \sum Y^2 = 4,000, \quad n = 25$

- a) Predict $E(Y_0)$ when $X_0 = 25$. Label it as $E(Y_0)$. (3 points)
- b) Compute the estimated variance of $[E(\hat{Y}_0)]$ using the formula $V[E(\hat{Y}_0)] = s^2 [X'_0(XX)^{-1}X_0]$, where $X'_0 = [1 \ 25]$ and $(XX)^{-1} = \frac{1}{n[\sum X^2 - n\overline{X}^2]} \begin{bmatrix} \sum X^2 & -n\overline{X} \\ -n\overline{X} & n \end{bmatrix}$. (8 points)
- c) Alternative method: Write $\theta_0 = E(Y_0) = \beta_1 + \beta_2 X_0$ and rewrite the model in (4) as

$$Y = \theta_0 + \beta_2 \widetilde{X} + u$$
(5)
where $\widetilde{X} = X - X_0$. Show that the OLS estimator of θ_0 , $\hat{\theta}_0$, is the same as
 $E(\hat{Y}_0)$ in 2(a). (4 points)

- d) Compute the variance of $\hat{\theta}_0$ and show that it is the same as $V[E(Y_0)]$ in 2(b). (6 points)
- e) Given your results in 2(c) and 2(d) what can you say about the prediction procedure for the K variable regression model? (6 points)
- 3. Dummy Variables: You are given the following information on wages (Y) for male and female candidates

	Number	Mean wage
Male	n_1	$\overline{Y_1}$
Female	n_2	\overline{Y}_2
Total	n	\overline{Y}

Note: $\overline{Y} = \left(n_1 \overline{Y_1} + n_2 \overline{Y_2}\right) / n$

Model A: $Y = \beta_1 + \beta_2 D_F + u$ (6)

where D_F is the female dummy variable.

Model B: $Y = \gamma_1 D_M + \gamma_2 D_F + v$ (7) where D_M is the male dummy. Note that there is no intercept in (7).

- a) Find the OLS estimators of β_1 and β_2 using the information in the above table. Give an interpretation of the coefficients. *Be careful about what you say.* (10 points)
- b) Find the OLS estimators of γ_1 and γ_2 using the information in the above table. Give an interpretation of the coefficients. *Be careful about what you say.* (10 points)
- c) Are the two models different? Explain in either case. (5points)
- d) Do you think the interpretation of β_2 will change if I were to add some explanatory variables (X) to Model A? Explain in either case. (5 points)