Econometrics 616
 Exam I
 Spring 2004

Total Points: 100
Time: 1 hour and 30 minutes
Note: Answer all questions and show work when necessary. Good Luck!
You are given the following formulas:

$$
\begin{equation*}
\text { Model: } Y=\beta_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+u \tag{1}
\end{equation*}
$$

The OLS estimators of β_{2} and β_{3} (denoted by b_{2}, b_{3}) are

$$
\begin{aligned}
& b_{2}=\frac{\sum x_{3}^{2} \sum x_{2} y-\sum x_{2} x_{3} \sum x_{3} y}{\sum x_{2}^{2} \sum x_{3}^{2}-\left(\sum x_{2} x_{3}\right)^{2}} \\
& b_{3}=\frac{\sum x_{2}^{2} \sum x_{3} y-\sum x_{2} x_{3} \sum x_{2} y}{\sum x_{2}^{2} \sum x_{3}^{2}-\left(\sum x_{2} x_{3}\right)^{2}}
\end{aligned}
$$

where the lower case variables are mean deviation of the corresponding uppercase variable.

For the same model the variances of the estimators b_{2} and b_{3} are

$$
\begin{aligned}
& V\left(b_{2}\right)=\frac{\sigma^{2} \sum x_{3}^{2}}{\sum x_{2}^{2} \sum x_{3}^{2}-\left(\sum x_{2} x_{3}\right)^{2}} \\
& V\left(b_{3}\right)=\frac{\sigma^{2} \sum x_{2}^{2}}{\sum x_{3}^{2} \sum x_{2}^{2}-\left(\sum x_{2} x_{3}\right)^{2}}
\end{aligned}
$$

1. You are given the following data matrix in deviation form $x^{\prime} x=\left[\begin{array}{cc}50 & 60 \\ 60 & 100\end{array}\right]$ and $x^{\prime} y=\left[\begin{array}{l}10 \\ 5\end{array}\right], y^{\prime} y=20.75$ and $n=20$.
a) Compute b_{2}, b_{3}, and the estimated variances of $b_{2}, b_{3} .(6+8$ points)
b) Compute the \mathbf{t}-value for testing the hypothesis $H_{0}: \beta_{2}+\beta_{3}=0$. (4 points)
c) Denote $\delta=\beta_{2}+\beta_{3}$ and rewrite the model in (1) as

$$
\begin{equation*}
Y=\beta_{1}+\beta_{2} \tilde{X}_{2}+\delta X_{3}+u \tag{2}
\end{equation*}
$$

where $\tilde{X}_{2}=X_{2}-X_{3}$. Compute the \mathbf{t}-value for testing the hypothesis $H_{0}: \delta=0$ in (2). Do you get the same result as in 1(b)? (8 points)
d) Show that model in (1) can be written in a standardized form, viz., $Y^{*}=\beta_{1}^{*}+\beta_{2}^{*} X_{2}^{*}+\beta_{3}^{*} X_{3}^{*}+u / S_{Y}$
where the variables in asterisks are standardized. (3 points)
(i) Find the OLS estimators of β_{2}^{*} and β_{3}^{*}. Also show that the OLS estimator of $\beta_{1}^{*}=0$. (6 points)
(ii) Compute the estimated variances of the OLS estimators of β_{2}^{*} and β_{3}^{*} as well as their t -values. (8 points)
2. Consider the simple regression model

$$
\begin{equation*}
Y=\beta_{1}+\beta_{2} X+u \tag{4}
\end{equation*}
$$

which is estimated using the following data.

$$
\begin{aligned}
& \bar{Y}=10, \quad \bar{X}=20, \quad \sum X Y=6,000 \\
& \sum X^{2}=12,000, \quad \sum Y^{2}=4,000, \quad n=25
\end{aligned}
$$

a) Predict $E\left(Y_{0}\right)$ when $X_{0}=25$. Label it as $E\left(\hat{Y}_{0}\right)$. (3 points)
b) Compute the estimated variance of $\left[E\left(\hat{Y}_{0}\right)\right]$ using the formula $V\left[\hat{E\left(Y_{0}\right)}\right]=s^{2}\left[X_{0}^{\prime}\left(X^{\prime} X\right)^{-1} X_{0}\right]$, where $X_{0}^{\prime}=\left[\begin{array}{ll}1 & 25\end{array}\right]$ and $\left(X^{\prime} X\right)^{-1}=\frac{1}{n\left[\sum X^{2}-n \bar{X}^{2}\right]}\left[\begin{array}{cc}\sum X^{2} & -n \bar{X} \\ -n \bar{X} & n\end{array}\right]$. (8 points)
c) Alternative method: Write $\theta_{0}=E\left(Y_{0}\right)=\beta_{1}+\beta_{2} X_{0}$ and rewrite the model in (4) as

$$
\begin{equation*}
Y=\theta_{0}+\beta_{2} \tilde{X}+u \tag{5}
\end{equation*}
$$

where $\tilde{X}=X-X_{0}$. Show that the OLS estimator of $\theta_{0}, \hat{\theta}_{0}$, is the same as $E\left(\hat{Y}_{0}\right)$ in 2(a). (4 points)
d) Compute the variance of $\hat{\theta}_{0}$ and show that it is the same as $V\left[\hat{E\left(Y_{0}\right)}\right]$ in 2(b). (6 points)
e) Given your results in 2(c) and 2(d) what can you say about the prediction procedure for the K variable regression model? (6 points)
3. Dummy Variables: You are given the following information on wages (Y) for male and female candidates

	Number	Mean wage
Male	n_{1}	\bar{Y}_{1}
Female	n_{2}	\bar{Y}_{2}
Total	n	\bar{Y}

Note: $\bar{Y}=\left(n_{1} \bar{Y}_{1}+n_{2} \bar{Y}_{2}\right) / n$
Model A: $Y=\beta_{1}+\beta_{2} D_{F}+u$
where D_{F} is the female dummy variable.
Model B: $Y=\gamma_{1} D_{M}+\gamma_{2} D_{F}+v$
where D_{M} is the male dummy. Note that there is no intercept in (7).
a) Find the OLS estimators of β_{1} and β_{2} using the information in the above table. Give an interpretation of the coefficients. Be careful about what you say. (10 points)
b) Find the OLS estimators of γ_{1} and γ_{2} using the information in the above table. Give an interpretation of the coefficients. Be careful about what you say. (10 points)
c) Are the two models different? Explain in either case. (5points)
d) Do you think the interpretation of β_{2} will change if I were to add some explanatory variables (X) to Model A? Explain in either case. (5 points)

