Econometrics 616

Exam II

Spring 2004
Total Points: 100
Time: 1 hour 30 minutes
Note: Answer all questions and show work when necessary. Good Luck!

1. i. Explain what the term heteroskedasticity means in the context of classical linear regression model (CLRM) and why it is a problem for the OLS estimator in the CLRM. (8 points)
ii. Consider the model $Y=\beta X+u, u \sim\left(0, \sigma^{2} X^{2}\right)$. Compute the variances of the GLS and OLS estimators of β and show that $V\left(\hat{\beta}_{O L S}\right)>V\left(\hat{\beta}_{G L S}\right)$. (8 points)
Hint: Cauchy-Schwartz Inequality states that $\sum w^{2} \sum z^{2} \geq\left(\sum w z\right)^{2}$
2. Use the following information to compute the LR, LM, and Wald tests. The model is

$$
Y=\beta X+u
$$

and the null hypothesis is $H_{0}: \beta=1, \quad H_{1}: \beta \neq 1 .(\mathbf{9}+\mathbf{9}+\mathbf{9}$ points)
Also show that the Wald test statistic is equivalent to the ordinary t-statistic squared. (4 points)

$$
\sum X Y=25, \quad \sum X^{2}=20, \quad \sum Y^{2}=40, \quad n=50
$$

You need to use the following formulas to perform the above tests.

$$
\begin{aligned}
& L R=n\left(\ln e_{*}^{\prime} e_{*}-\ln e^{\prime} e\right) \\
& L M=n\left(e_{*}^{\prime} e_{*}-e^{\prime} e\right) / e_{*}^{\prime} e_{*} \\
& W=n\left(e_{*}^{\prime} e_{*}-e^{\prime} e\right) / e^{\prime} e
\end{aligned}
$$

3. Let the true model be:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u, \quad u \sim \operatorname{iid}\left(0, \sigma_{u}^{2}\right) \tag{1}
\end{equation*}
$$

but you estimate the model:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+v, \quad v \sim \operatorname{iid}\left(0, \sigma_{v}^{2}\right) \tag{2}
\end{equation*}
$$

i. Show that your OLS estimator of $\beta_{1}\left(\operatorname{say} \tilde{\beta}_{1}\right)$ from model (2) is biased and comment on the direction of the bias. (8 points)
ii. Show that $V\left(\hat{\beta}_{1}\right)=\sigma_{u}^{2} /\left(\left(1-r^{2}\right) \sum\left(X_{1}-\bar{X}_{1}\right)^{2}\right)$ where $\hat{\beta}_{1}$ is the OLS estimator from the true model in (1), and r^{2} is the squared correlation coefficient between X_{1} and X_{2}. ($\mathbf{1 0}$ points) Hint: For the K variable regression model, $V\left(b_{k}\right)=\sigma^{2} / X_{k}^{\prime} M_{-k} X_{k}, k=2, \ldots, \mathrm{~K}$, where b_{k} is OLS estimator of the coefficient of X_{k}.
iii. If you over specify the model as:
$Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+w \quad w \sim \operatorname{iid}\left(0, \sigma_{w}^{2}\right)$
show that $V\left(\breve{\beta}_{1}\right)=\sigma_{w}^{2} /\left(\left(1-R_{1}^{2}\right) \sum\left(X_{1}-\bar{X}_{1}\right)^{2}\right)$ where $\breve{\beta}_{1}$ is the OLS estimator from model (3) and R_{1}^{2} is the R-squared from the regression of X_{1} on a constant, X_{2}, and X_{3}. (10 points) Use the hint in (ii) above.
iv. Compare $V\left(\hat{\beta}_{1}\right)$ with $V\left(\breve{\beta}_{1}\right)$. Which one is smaller? (6 points)
4. Consider the model:

$$
\begin{equation*}
Y_{t}=\alpha+u_{t}, \quad u \sim\left(0, \sigma_{u}^{2}\right) \tag{4}
\end{equation*}
$$

a. If $u_{t}=\rho \cdot u_{t-1}+\varepsilon_{t}$ where $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma_{\varepsilon}^{2}\right)$, explain how you would estimate α and ρ. Show all of the necessary steps. (9 points)
b. If $u_{t}=\rho \cdot u_{t-1}+\varepsilon_{t}$ where $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma_{\varepsilon}^{2} X_{t}^{2}\right)$, explain how you would estimate α and ρ. Show all of the necessary steps. (10 points)

Bonus Questions

c. In the model (4) if $u_{t}=\varepsilon_{t}+\phi \cdot \varepsilon_{t-1}$ where $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma_{\varepsilon}^{2}\right)$, explain how you would estimate α and ϕ. Show all of the necessary steps. (8 points)
d. Consider the model in (4). Using the Central Limit Theorem that states if a random variable $X_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right), \quad$ then $\sqrt{n} \bar{X} \sim N\left(0, \sigma^{2}\right)$, show that $\sqrt{n}(\hat{\alpha}-\alpha) \stackrel{a}{\sim} N\left(0, \sigma_{u}^{2}\right)$ where $\hat{\alpha}$ is the OLS estimator of α. (7 points)

