Econ 616
 Midterm Exam 2
 Spring 2006
 Total Points: 100
 Time: 1 hr . and 20 min .

Answer all parts. Note that each part has different weight. Good Luck!!

1. The linear regression model consists of the following equation (C is consumption expenditure, and D is defense expenditure):

$$
\begin{equation*}
C_{i}=\beta_{1}+\beta_{2} G D P_{i}+\beta_{3} D_{i}+u_{i}, i=1, \cdots, n \tag{3}
\end{equation*}
$$

(a) Suppose that $E\left(u_{i}\right)=0$ but you suspect that the model is heteroskedastic (i.e., $\left.E\left(u_{i} \mid G D P_{i}, D_{i}\right)=\sigma_{i}^{2}\right)$.
(i) (8 points) How would you test for the presence of heteroskedasticity? Suggest a test of your choice and explain step-by-step how you would perform the test.
(ii) (9 points) If you find evidence for heteroskedasticity, how would you obtain heteroskedasticity corrected standard errors of the OLS estimators of β_{1}, β_{2} and β_{3} ? Explain the steps.
(b) (8 points) If $E\left(u_{i}\right)=0$ and $E\left(u_{i}^{2}\right)=\sigma^{2} G D P_{i}$, how would you estimate β_{1}, β_{2} and β_{3} in this model taking the above heteroskedasticity problem into account? Show all the steps.
2. Consider the following two models

$$
\begin{gather*}
Y=\beta_{1}+\beta_{2} D_{2}+\beta_{3} D_{3}+\beta_{4} D_{4}+u \tag{1}\\
Y=\alpha_{1} D_{1}+\alpha_{2} D_{2}+\alpha_{3} D_{3}+\alpha_{4} D_{4}+u \tag{2}
\end{gather*}
$$

where D_{1}, \cdots, D_{4} are quarterly dummies. Assume that there are equal (T) observations in each quarter.
(a) ($\mathbf{1 0}$ points) Write the normal equations for the above models.
(b) ($\mathbf{1 0}$ points) Derive the OLS estimators of the α and β coefficients.
(c) ($\mathbf{5}$ points) Show the relationship between the OLS estimates of the α and β coefficients.
3. Consider the following simple regression model

$$
\begin{equation*}
Y_{i g}=\beta X_{i g}+\epsilon_{i g}, \tag{1}
\end{equation*}
$$

where $E\left(\epsilon_{i g}\right)=0$, and $\operatorname{Var}\left(\epsilon_{i g}\right)=\sigma^{2}$. The subscript i refers to i th individual in the g th group. The data consists of 5 group means which are to be used to estimate

$$
\begin{equation*}
\bar{Y}_{g}=\beta \bar{X}_{g}+\bar{\epsilon}_{g}, g=1, \ldots, 5 . \tag{2}
\end{equation*}
$$

Group	1	2	3	4	5	All
--	--	--	--	--	--	--
n_{g}	10	20	15	30	25	100
\bar{Y}_{g}	2	4	3	1	5	--
\bar{X}_{g}	1	4	2	1	6	--

(a) (10 points) Estimate β using both OLS and GLS procedures.
(b) ($\mathbf{1 0}$ points) Compute the variances of OLS and GLS estimators of β assuming $\sigma^{2}=1$. Show that the GLS estimator is more efficient.
4. Data from two sub-periods with 50 observations each produced the following moment matrices (note that X contains a column of ones and another variable)

Sample $1 \quad X^{\prime} X=\left(\begin{array}{cc}50 & 300 \\ 300 & 2100\end{array}\right), Y^{\prime} X=\left(\begin{array}{ll}300 & 2000\end{array}\right), Y^{\prime} Y=2100$.
Sample $2 \quad X^{\prime} X=\left(\begin{array}{cc}50 & 300 \\ 300 & 2100\end{array}\right), Y^{\prime} X=\left(\begin{array}{ll}300 & 2200\end{array}\right), Y^{\prime} Y=2500$.
(a) ($\mathbf{1 5}$ points) Test the hypothesis that the coefficients (intercept and slope) in both sub-periods are the same $\left(\beta^{1}=\beta^{2}\right)$, assuming that variances are the same for both sub-periods $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$.
(b) (15 points) Assume that the coefficients (intercept and slope) in both sub-periods are the same, but the variances for both sub-periods are not the same, i.e., $\sigma_{1}^{2} \neq \sigma_{2}^{2}$. How would you estimate such a model when (i) σ_{1}^{2} and σ_{2}^{2} are known, (ii) σ_{1}^{2} and σ_{2}^{2} are unknown?

