Topological Analysis (1)

Hiroki Sayama
sayama@binghamton.edu
Network data import & export

- `read_gml`
- `read_adjlist`
- `read_edgelist`
 - Creates undirected graphs by default; use "create_using=NX.DiGraph()" option to generate directed graphs
Exercise

- Import Supreme Court Citation Network Data into NetworkX
 (http://jhfowler.ucsd.edu/judicial.htm)

 - Import as an undirected graph

 - Import as a directed graph
Network visualization

- "nx.draw"

- Various layout functions
 - Spring, circular, random, spectral, etc.

- For visualization of large-scale networks, use "Gephi"
Gephi

- Network visualization & analysis tool
Basic Properties of Networks
Basic properties of networks

- Number of nodes
- Number of links
- Network density
- Connected components
Network density

• The ratio of # of actual links and # of possible links

 - For an undirected graph:
 \[d = \frac{|E|}{\left(|V| (|V| - 1) / 2 \right) } \]

 - For a directed graph:
 \[d = \frac{|E|}{\left(|V| (|V| - 1) \right) } \]
Connected components

Number of connected components = 2
Exercise

- Measure the following for the (undirected) Supreme Court Citation Network
 - Number of nodes, links
 - Network density
 - Number of connected components
 - Size of the largest connected component
 - Distribution of the sizes of connected components
Shortest path lengths, etc.

- shortest_path
- shortest_path_length
- eccentricity
 - Max shortest path length from each node
- diameter
 - Max eccentricity in the network
- radius
 - Min eccentricity in the network
Exercise

• Draw the Karate Club network with its nodes painted with different colors according to their eccentricity
Characteristic path length

- **Average** shortest path length over all pairs of nodes

- Characterizes how large the world represented by the network is
 - A small length implies that the network is well connected globally
Clustering coefficient

• For each node:
 - Let n be the number of its neighbor nodes
 - Let m be the number of links among the k neighbors
 - Calculate $c = m / \binom{n}{2}$

Then $C = \langle c \rangle$ (the average of c)

• C indicates the average probability for two of one’s friends to be friends too
 - A large C implies that the network is well connected locally to form a cluster
Exercise

• Measure the average clustering coefficients of the following network:
 - Karate Club graph
 - Krackhardt Kite graph
 - Supreme Court Citation network
 - Any other network of your choice

• Compare them and discuss
 - Can you tell anything meaningful?
Randomizing networks

- Construct a “null model” network samples to test statistical significance of experimentally observed properties
 - Randomized while some network properties are preserved (e.g., degrees)
 - If the observed properties still remain after randomization, they were simply caused by the preserved properties
 - If not, something else was causing them
Randomization method (1)

- **Double edge swap method**

1. Randomly select two links
2. Swap its end nodes
 - (If this swap destroys some network property that should be conserved, cancel it)
3. Repeat above many times
Randomlization method (2)

• Configuration model (Newman 2003)

1. Cut every link into halves (heads and tails)

2. Randomly connect head to tail
 • This conserves degree sequences
 • (Could result in multiple links and self-loops)
Other randomization methods

- Keeping only #'s of nodes and edges
- Degree sequence method
- Expected degree sequence method
Exercise

- Randomize connections in the Karate Club graph
- Measure the average clustering coefficient of the randomized network many times
- Test whether the average clustering coefficient of the original network is significantly non-random or not