Simulation I: Dynamics of Networks

Hiroki Sayama
sayama@binghamton.edu
Modeling and Simulation of Dynamical Networks
Dynamics of networks

- Dynamic growth and transformation of network topologies
 - Social network formation
 - Growth of the Internet and WWW
 - Growth of scientific citation networks
Dynamics on networks

• Dynamic state changes taking place on a static network topology
 - Gene/protein regulatory networks
 - Population dynamics on food webs
 - Spread of disease/opinion/failure
Adaptive Networks

• Complex networks whose states and topologies co-evolve, often over similar time scales
 - Link (node) states adaptively change according to node (link) states
Modeling and Simulation of Dynamics of Networks
Dynamics of networks

- Dynamic growth and transformation of network topologies
 - Social network formation
 - Food web formation over ecological/evolutionary time scales
 - Growth of the Internet and WWW
 - Growth of scientific citation networks
 - Effects of node/link removal or rewiring
Network Percolation
Percolation in random networks

- Number of connected components decreases with increasing link probability

- Above a critical probability p_c, a giant connected component emerges
Giant connected component

- Largest connected component whose size (relative to the total number of nodes \(N \)) remains positive even if \(N \) is very large

\[
\lim_{N \to \infty} \frac{|GCC|}{N} > 0
\]

- If LCC is not giant, \(\lim_{N \to \infty} \frac{|LCC|}{N} = 0 \)
Exercise

• Simulate the emergence of a giant connected component by randomly introducing edges one by one

• Monitor the process and see how the giant connected component emerges
Exercise

• Plot (1) the size of the largest connected component and (2) the number of connected components of a random network made of 10,000 nodes over varying p
Review: Degree distribution of ER networks

- Degree distribution of an ER random network is given by a binominal distribution:
 \[P(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k} \]

- With large \(N \) (with fixed \(Np \)), it approaches a Poisson distribution:
 \[P(k) \sim (Np)^k e^{-Np} / k! \]
Percolation threshold

- Let s be the probability for a node to belong to LCC (i.e., $|\text{LCC}| = sN$)
- Degree dist.: $P(k) = (Np)^k e^{-Np} / k!$
- Probability for a node to be separated from LCC is given by:

$$1-s = \sum_{k=0}^{\infty} P(k) (1-s)^k$$

- $(1-s)^k$ is the probability for all k neighbors to be separated from LCC
Exercise

• Using the following equations, show that \(s \) can take positive values if and only if \(\langle k \rangle = Np > 1 \)

\[
P(k) = (Np)^k e^{-Np} / k!
\]

\[
1 - s = \sum_{k=0}^{\infty} P(k) (1-s)^k
\]
Exercise

• Choose two link probabilities, one below and one above p_c

• Create ER random networks for each probability with varying N, and see how the size of their LCCs scales along N
Exercise

• If $1 - s < 1/N$, that means all nodes are essentially included in LCC, and thus the network is made of just one connected component.

• Obtain the critical threshold of $<k>$ above which this occurs.
Edge Rewiring and Growth
Exercise: Rewiring for “small-world”

- Create a ring-shaped network made of n nodes; connect each node to k nearest neighbors
- Visualize the network by coloring nodes using their closenesses
- Randomly rewire edges one-by-one
- Monitor what happens to the network topology and node colors
Exercise: Preferential attachment

- Simulate the growth process of the Barabasi-Albert network growth model with $m = 1$, $m = 3$ and $m = 5$

- See how the process is affected by variation of this parameter
Exercise

• Modify the simulation code so that the node selection preference is:
 - Independent of the node degree
 - Proportional to the square of the node degree
 - Inversely proportional to the node degree

• Conduct simulations and compare the resulting network topologies
Exercise

• Modify the simulation code of the preferential attachment model so that a node whose degree exceeds a certain capacity limit splits into two (and each node inherits about half of the original connections)

• Conduct simulations and compare the resulting network topologies
Robustness and Vulnerability of Complex Networks
Robustness and vulnerability

• How do these networks respond to dynamic topological changes caused by external forces?

 - Input: Removal of nodes
 - Output: Changes in characteristic path length and connectivity
Two types of node removals

- **Error**: Random removal of nodes
 - Occurs stochastically
 - Same error probability for all nodes

- **Attack**: Selective removal of most connected nodes
 - Occurs deterministically
 - The attacker knows network hubs
Examples in real-world networks

- **WWW:**
 - Error ⇒ Occasional server breakdown
 - Attack ⇒ Server breakdown due to DoS etc.

- **Warfare:**
 - Error ⇒ Accidental local actions
 - Attack ⇒ Strategic actions to hit the central core of opponents

- **Marketing:**
 - Error ⇒ Indiscriminate direct mail, spam
 - Attack ⇒ Targeting on influential customers
Robustness and vulnerability of scale-free networks

- Considered the effects of random errors & targeted attacks on scale-free networks (both simulated and actual ones)
Change of diameter (experiments with artificially generated networks)

Characteristic path length

SF networks are very robust to random failures

SF networks are highly vulnerable to attacks
Change of diameter (experiments with networks based on real data)

Characteristic path length

Fraction of removed nodes
Why such robustness / vulnerability occurs?

A scale-free network has a few hub nodes and a lot of non-hub (mostly terminal) nodes

→ Random errors are likely to hit non-hub nodes, causing only limited influence

→ Attacks always hit hubs, causing great impacts on the whole
Fragmentation analysis

- If node removal goes on further, the network will eventually fall apart (fragmentation)

One can detect such fragmentation by monitoring the following:

\[S : \text{Size of LCC} \]

\[<s> : \text{Average size of all other smaller connected components} \]
Exercise

• Calculate S and $\langle s \rangle$ for this graph
What S and $\langle s \rangle$ tells us

- While individual nodes drop out one by one from the largest connected body:
 \[\rightarrow S \text{ decreases slowly, } \langle s \rangle \sim 1 \]

- When the LCC falls apart:
 \[\rightarrow S \text{ drops suddenly, } \langle s \rangle > 1 \]

The latter indicates a critical moment of network fragmentation
Fragmentation process (experiments with artificially generated networks)

Fraction of removed nodes

Random

Scale-free

S, $\langle s \rangle$

- S $\langle s \rangle$
- \square Failure
- \circ Attack
Fragmentation process (experiments with networks based on real data)

Fraction of removed nodes

$S, \langle s \rangle$

Internet

WWW
Exercise

- Replicate Albert, Jeong & Barabasi's network fragmentation experiments for ER random networks and BA scale-free networks
Exercise

• Conduct fragmentation analysis on Mark Newman’s Political Blogs network data

• Try several different attack strategies and see which one would be most effective in disrupting the connectivity of the network
Network vulnerability

• Scale-free networks are robust to stochastic errors, but quite fragile against intentional attacks targeted to hubs

• This conclusion directly applies to real-world networks
 - DoS attacks to key servers, terrorisms at commercial hubs, etc…

• Then, what can we do?
A Potential Solution: (1,0) networks
Our attempt

 - Reconsidered the details of network development and proposed (1,0) networks that are more robust to both errors and attacks than pure scale-free networks.
Two parameters for network development

• Preference parameter $p \ (0 \leq p \leq 1)$
 - Specifies how much the selection of nodes is affected by their degrees

• Growth parameter $g \ (0 \leq g \leq 1)$
 - Specifies the fraction of nodes that are added through the developmental process to the total number of nodes

Seeking a more robust network in the p-g parameter space
Response to random errors

dd/dt

exponential

Speed of diameter increase

scale free

(1,0)
Response to targeted attacks

d : characteristic path lengths

Intensity of attacks
Why robust to attacks?

- During the development of a (1,0) network, well-connected hubs can be connected to each other

→ Tightly connected clusters of hubs will emerge

(In the scale-free network growth with preferential attachment, isolated hubs cannot be connected to each other)
Exercise: Preferential attachment

• Simulate the development process of the \((p, g)\) network model

• See how the resulting network topology differs among the following
 \[(p, g) = (0, 0) \text{ (random)}\]
 \[(p, g) = (1, 1) \text{ (preferential attachment)}\]
 \[(p, g) = (1, 0)\]
Implications

Networks that continue to reinforce connections between their internal parts can be more robust in many situations than other networks whose internal connections are enhanced only by the addition of newcomers.