
Self-Replicating Machines Attempting to Solve the Unsolvable

Hiroki Sayama
Department of Bioengineering, Binghamton University

P.O. Box 6000, Binghamton, NY 13902-6000, USA
sayama@binghamton.edu

Abstract

This paper elucidates a close similarity between self-
replication of von Neumann’s universal constructors and cir-
cular computational processes of universal computers that ap-
pear in Turing’s original proof of the undecidability of the
halting problem. The result indicates a possibility of reinter-
preting self-replicating machines as attempting to solve the
undecidable halting problem in the context of construction.1

Introduction
John von Neumann’s theory of self-reproducing automata
(von Neumann 1951; von Neumann 1966) is now regarded
as one of the greatest theoretical achievements made in early
stages of artificial life research (Marchal 1998; Sipper 1998;
McMullin 2000). Before working on its implementation on
cellular automata, von Neumann sketched an outline of his
self-replicating machine that consists of the following parts
(von Neumann 1951):

A: A universal constructor that constructs a product X from
an instruction tape I(X) that describes how to construct X .

B: A tape copier that duplicates I(X).

C: A controller that dominates A and B and does the fol-
lowing:

1. Give I(X) to A and let it construct X .

2. Pass I(X) to B and let it duplicate I(X).

3. Attach one copy of I(X) to X and separate X + I(X)
from the rest.

The functions of these parts are symbolically written as

A+ I(X) → A+ I(X)+X , (1)

B+ I(X) → B+2I(X), (2)

(A+B+C)+ I(X)

→{(A+B+C)+ I(X)}+{X + I(X)} . (3)

1This is a revised and extended version of another preprint writ-
ten by the same author (Sayama 2006).

Then self-replication can be achieved if one lets X = D ≡
A+B+C, i.e.,

D+ I(D) → {D+ I(D)}+{D+ I(D)} . (4)

Alan Turing’s preceding work on computationally univer-
sal machines (Turing 1936) gave a hint for von Neumann to
develop these formulations of self-replicating machines, es-
pecially on the idea of universal constructor A. These two
kinds of machines share the same concept that a universal
machine, given an appropriate finite description, can execute
any arbitrary tasks specified in the description. The only dif-
ference is that one is about computation in an infinite tape,
and the other is about construction in an infinite space. The
former pioneered computation theory. The latter also pio-
neered a new, yet unnamed to date, field of study connecting
logic and mathematics to biology and engineering. Here let
us name this field construction theory for now.

While von Neumann’s universal constructor holds a close
correspondence to Turing’s universal computer, however, lit-
tle attention has been paid to what the entire self-replicating
automaton D in construction theory would parallel in com-
putation theory. Besides A, the automaton D also includes
B that duplicates a given tape and C that attaches a copy of
the duplicated tapes to the product of A. They are the sub-
systems that von Neumann added to the automaton in view
of self-replication. Their counterparts are not present in the
design of Turing machines, and therefore, the entire archi-
tecture of self-replicating machines has often been underes-
timated as if it were a heuristic design meaningful only on
the construction side, but not on the computation side.

In this short paper, I will point out that self-replication
in construction theory actually has a fundamental relation-
ship with the halting problem in computation theory. Specif-
ically, self-replication of von Neumann’s universal construc-
tors has its mathematical description in the identical form as
that of circular computational processes of universal com-
puters that appear in Turing’s original proof of the undecid-
ability of the halting problem. This leads us to a new inter-
pretation of self-replicating machines as attemping to solve
the undecidable halting problem, not in computation theory

Workshop Proceedings ALIFE X

148



but in the context of von Neumann’s construction theory.

The halting problem
The halting problem is a well-known decision problem that
can be informally described as follows:

Given a description of a computer program and an ini-
tial input it receives, determine whether the program
eventually finishes computation and halts on that input.

This problem has been one of the most profound issues in
computation theory since 1936 when Alan Turing proved
that no general algorithm exists to solve this problem for
any arbitrary programs and inputs (Turing 1936). The con-
clusion is often paraphrased that the halting problem is un-
decidable.

Turing’s proof uses reductio ad absurdum. A well-known
simplified version takes the following steps. First, assume
that there is a general algorithm that can solve the halting
problem for any program p and input i. This means that
there must be a Turing machine H that always halts for any
p and i and computes the function

h(p, i) ≡
{

1 if the program p halts on the input i,

0 otherwise.
(5)

Second, one can easily derive from this machine another
Turing machine H ′ whose behavior is modified to compute
only diagonal components in the p-i space, i.e.,

h′(p) ≡ h(p, p). (6)

This machine determines whether the program p halts when
its self-description is given to it as an input. Such a self-
reference would be meaningless for most of actual computer
programs, but still theoretically possible.

Then, finally, one can tweak H ′ slightly to make yet an-
other machine H∗ that falls into an infinite loop if h′(p) =
1. What could happen if H∗ was supplied with its self-
description p(H∗)? It eventually halts if h′(p(H∗)) =
h(p(H∗), p(H∗)) = 0, i.e., if it does not halt on p(H∗). Or,
it loops forever if h′(p(H∗)) = h(p(H∗), p(H∗)) = 1, i.e.,
if it eventually halts on p(H∗). Both lead to contradic-
tion. Therefore, the assumption we initially made must be
wrong—there must be no general algorithm to solve the halt-
ing problem.

Turing’s original proof
Here, I would like to bring up an informative, yet relatively
untold, fact that Turing himself did not like to have such a
tricky mathematical treatment as the above third step that in-
troduces a factitious logical inversion into the mechanism of
the machine, so he intentionally avoided using it in his orig-
inal proof. What he actually did can be seen in the following
extract from his original paper (Turing 1936, sec.8):

“... Now let K be the D.N2 of H3. What does H do in
the K-th section of its motion? It must test whether K
is satisfactory4, giving a verdict “s” or “u”. Since K
is the D.N of H and since H is circle-free, the verdict
cannot be “u”. On the other hand the verdict cannot
be “s”. For if it were, then in the K-th section of its
motion H would be bound to compute the first R(K −
1) + 1 = R(K)5 figures of the sequence computed by
the machine with K as its D.N and to write down the
R(K)-th as a figure of the sequence computed by H.
The computation of the first R(K)−1 figures would be
carried out all right, but the instructions for calculating
the R(K)-th would amount to “calculate the first R(K)
figures computed by H and write down the R(K)-th”.
This R(K)-th figure would never be found. I.e., H is
circular, contrary both to what we have found in the last
paragraph and to the verdict “s”. Thus both verdicts
are impossible and we conclude that there can be no
machine D6.”
(Footnotes added by the author)

In this paragraph Turing considered the actual behavior of
intact H (in his notation) on its self-description K, and no-
ticed that what this machine would need to compute is ex-
actly the same situation as the machine itself is in: “H
is looking at its self-description K.” Such a self-reference
would result in a circular process that never comes back.
Therefore, H cannot make any decision on whether K is sat-
isfactory or not. This contradiction negatively proves the
possibility of D, or a general computational procedure to de-
termine whether a machine stops writing symbols or not.

Self-replication emerging

Turing’s argument described above gives essentially the
same argument as to what could happen if H ′ (in our no-
tation) received its self-description p(H ′). In this case H ′
must compute the value of h′(p(H ′))= h(p(H ′), p(H ′)), and
hence it would need to compute the behavior of the machine
described in p(H ′) on the input p(H ′), exactly the same cir-
cular situation as that appeared in Turing’s proof. Let us use

2Description Number: An integer that describes the specifics of
a given computational machine.

3Note that this is different from H we used in the previous sec-
tion. Turing used H for a machine that incrementally and indefi-
nitely computes the diagonal sequence of the infinite matrix made
of all computable sequences enumerated in the order of D.N’s of
corresponding machines.

4An integer N is considered satisfactory if the machine whose
D.N is N can keep writing symbols indefinitely without falling into
a deadlock (Turing called this property circle-free).

5R(N) denotes how many machines are circle-free within the
range of D.N’s up to N.

6A machine that is assumed capable of determining whether a
given machine is circular or not. This machine is introduced to
construct H.

Workshop Proceedings ALIFE X

149



this example in what follows, as it is much simpler to under-
stand than Turing’s original settings.

What kind of computational task would H ′ be carrying
out in this circular situation? It tries to compute the be-
havior of H ′ + p(H ′), which tries to compute the behav-
ior of H ′ + p(H ′), which tries to compute the behavior of
H ′ + p(H ′), ... Interestingly, this chain of self-computation
takes place in the form identical to that of self-replication
in von Neumann’s construction theory, if “to compute the
behavior” is read as “to construct the structure”. This sim-
ilarity may be better understood by noting that the role of
C that attaches I(X) to X shown in (3) parallels the role of
diagonalization shown in (6); both attempt to apply a copy
of the description to the machine represented by the descrip-
tion. Moreover, if one watched how the actual configura-
tion of the tape of H ′ changes during such a self-computing
process, he would see that the information about H ′ actu-
ally self-replicates on the tape space (with its representa-
tion becoming more and more indirect as generation changes
though). Turing might have imagined this kind of replicating
dynamics of machines when he developed his argument.

In view of the similarity between the above two processes,
it can be clearly recognized that von Neumann’s design of
self-replicating machines is by no means just an anomaly
in construction theory. Rather, it correctly reflects the self-
computation chain of computationally universal machines
that appears in the proof of the undecidability of the halt-
ing problem presented by Turing.

Conclusion
With the similarity between computation and construction
kept in mind, it may sound rather trivial that universal con-
struction comes with undecidable problems similar to those
for universal computation. For example, determining what
a universal constructor eventually produces is equivalent to
determining what a Turing machine eventually computes,
and therefore it must be undecidable in general.

The above undecidability was already argued by Fred Co-
hen (Cohen 1987), where he showed that there is no gen-
eral algorithm for the detection of self-replicating computer
viruses. The proof is rather simple: If there were an algo-
rithm, say S, that can determine whether a given computer
program is self-replicative, then one could easily create an-
other contradictory program that has S built in it and self-
replicates if and only if its S classifies the program itself as
non-self-replicative. This is probably the best acknowledged
discussion on the relationship between self-replication and
the undecidable problem so far.

We should note, however, that Cohen’s argument above
suggests that detecting a computer program that does “X” is
generally impossible, where “X” could be self-replication
but also be replaced by any other functions. Here self-
replication is no more than just one of many possible be-
haviors of universal constructors.

In contrast, our argument discussed in this paper is more
fundamental: Universal construction comes with undecid-
able problems because of the existence of self-replication.
Here self-replication is not just an instance of many possible
behaviors, but is actually the key property of the behavior of
universal machines, either computational or constructional.
As Turing showed in his proof, when a computational ma-
chine tries to solve the halting problem of its own computa-
tion process, it will fall into a cycle of self-computation that
never ends in a finite time. Our point is that this corresponds
exactly to the cycle of self-replication in construction theory,
and that von Neumann’s self-replicating automaton model
rightly captures this feature in its formulation. The halting
problem solver in construction theory lets the subject ma-
chine construct its product and see if it eventually stops. If
it tries to solve the halting problem of its own construction
process, it will start self-replication, and the entire process
never completes in a finite amount of time.

The insight obtained above provides us with some new
implications about the connections between life and com-
putation. The relationship between parent and offspring is
equivalent to the relationship between the computing H ′ and
the computed H ′ in computation theory. The endless chain
of self-replication that living systems are in, may be reinter-
preted as a parallel to the endless chain of self-computation
that a halting-problem solver falls in. In a sense, we may
all be in the process initiated billions of years ago by a first
universal constructor, who just tried to see the final product
of its “diagonal” construction.

References
Cohen, F. 1987. Computer viruses: Theory and experiments.

Computers & Security 6:22–35.

Marchal, P. 1998. John von Neumann: The founding father
of artificial life. Artificial Life 4:229–235.

McMullin, B. 2000. John von Neumann and the evolution-
ary growth of complexity: Looking backward, looking
forward... Artificial Life 6:347–361.

Sayama, H. 2006. On self-replication and the halt-
ing problem. Submitted. Preprint available at
http://arxiv.org/abs/nlin.AO/0603026 .

Sipper, M. 1998. Fifty years of research on self-replication:
An overview. Artificial Life 4:237–257.

Turing, A. M. 1936. On computable numbers, with
an application to the Entscheidungsproblem. Proc.
London Math. Soc. Ser. 2 42:230–265. A correc-
tion followed in 1937. Fulltext available online at
http://www.abelard.org/turpap2/tp2-ie.asp .

von Neumann, J. 1951. The general and logical theory of
automata. In Jeffress, L. A., ed., Cerebral Mechanisms

Workshop Proceedings ALIFE X

150



in Behavior—The Hixon Symposium, 1–41. New York:
John Wiley. Originally presented in September, 1948.
Also collected in Aspray, W., and Burks, A. W., eds.,
Papers of John von Neumann on Computing and Com-
puter Theory, 391–431. 1987. Cambridge, MA: MIT
Press.

von Neumann, J. 1966. Theory of Self-Reproducing Au-
tomata. Urbana, IL: University of Illinois Press. Edited
and completed by A. W. Burks.

Workshop Proceedings ALIFE X

151


