
Notes on Detection
∗

EE 480F

February 1, 2005

1 Classical Cryptography

1.1 Some basic ciphers

Since we will use detection to crack codes, let’s start with a brief list of
classical ciphers that we will be breaking.

• Caesar cipher consists of shifting each letter three positions on the
alphabet. HELLO becomes KHOOR.

• The shift cipher consists of shifting each letter by a constant but
unknown shift. Encrypt(HELLO, 2) becomes JGNNQ. There are 26 keys.
Sometimes we represent each key with a letter: Encrypt(HELLO, B) =
Encrypt(HELLO, 2)

• The cipher described in art #45 of the Kāma-Sūtra consists of
pairing off the alphabet, and swapping each letter with its pair. There
are many keys, 26!/13!213 = 7905853580625.

• The general substitution cipher maps each letter with another, pos-
sibly itself. There are 26! = 403291461126605635584000000 ≈ 288

keys.

These are monoalphabetic ciphers: each input letter is mapped to one
output letter. A polyalphabetic cipher can map the same input letter to
different outputs. Examples:

∗Section 2 is based on the second chapter of An Introduction to Signal Detection and

Estimation by H. Vincent Poor. This is only a smidgen of that book, which you should
buy and guard jealously if you are a graduate student in EE.

1

• The Vigenère cipher is a shift cipher combined with a keyphrase
rather than a single shift. If the keyword is DOG, then

L = Encrypt(H, D)

T = Encrypt(E, O)

S = Encrypt(L, G)

P = Encrypt(L, D)

D = Encrypt(O, O)

E = Encrypt(W, G)

S = Encrypt(O, D)

G = Encrypt(R, O)

S = Encrypt(L, G)

. . .

• The Enigma machine of Arthur Scherbius is an extreme example,
but a polyalphabetic cipher nonetheless. At any time, the machine
partitions the alphabet into pairs, and maps each letter to its pair.
However, the machine state changes every time a letter is entered.

1.2 Basic frequency analysis

For a monoalphabetic cipher, the proportions of letters will match the dis-
tribution of the language in which it is written. Hence a histogram of the
cipher symbols will leak all sorts of information about the key.

Here is some notation we will use for the rest of the class:

For a string s:

• Ns[a] is the number of times the letter a appears in s. Ns is simply
the frequency histogram of the string.

• Ts[a] is the fraction of times the letter a appears in s: Ts[a] = 1
|s|Ns[a].

This is just a normalized histogram, and can be treated like a proba-
bility distribution. The “T” stands for “type,” and this is sometimes
called the type of s, or the type distribution of s.

The Index of Coincidence of a string, written IC(s), is the probability
that two randomly chosen letters in the string are equal. Using the above

2

notation, IC(s) =
∑

a(Ts[a])2, the sum of squares of the type of s.1

Facts about IC(s):

• IC(s) ≤ 1.

• IC(s) = 1 when a string contains only one kind of symbol.

• IC(s) ≥ 1/|A|, where |A| is the size of the alphabet.

• IC(s) = 1/|A|, when a string contains every letter in equal proportion.

The index of coincidence is used as a test for natural language. If cipher-
text has the same distribution as english, its IC will be abnormally large.
Note: we don’t use IC(s) today, or we shouldn’t, because it is suboptimal.

1.3 How to break Vigenère

To break ciphertext encrypted with Vigenère, you must first determine the
key length. There are two ways to do this:

Attack 1 : Guess the length of the key phrase k, divide the ciphertext
into n = |k| parts, each representing text from a simple shift cipher.
Use a test for natural language on each part. The value will be high
when the key length is properly guessed.

Attack 2 : Look for strings in the ciphertext which appear more tthan
once. With good probability, the distance between these strings will
be a multiple of the keyphrase length.

After the length is known, the text can be partitioned into pieces, and
each piece broken by monoalphabetic frequency analysis. More in the section
on detection, below.

1We are assuming we might pick the same letter twice. Many textbooks give a different
definition of IC(s), assuming that the two randomly chosen letters are in different places.
It really doesn’t matter in practice, so we use the simple definition.

3

2 Detection

2.1 Detecting English

Imagine we have a piece of ciphertext c that has been encrypted with one of
several million keys. A computer could simply decrypt c with every possible
key—short work for a computer—until it finds the right one. But how does
the computer know when it guesses the right key?

Presumably, under the wrong key, Decrypt(c, kwrong) looks like gibber-
ish, whereas Decrypt(c, kright) possesses the statistics of English. How does
the computer test for the statistics of English? A better question might be,
what is the best algorithm for doing so?

2.2 Elementary Hypothesis Testing

We will be describing an hypothesis test δ(), which inputs a string and
outputs a 0 or a 1. δ(s) = 1 if the algorithm detects signs of English.

The algorithm will occasionally make mistakes. After all, random let-
ters will form English words with some tiny probability; and some English
phrases look very much like gibberish.2

Given an hypothesis test δ():

• The false alarm probability PF is the probability that δ incorrectly
outputs 1.

• The miss probability PM is the probability that δ incorrectly outputs
0 — that δ misses the plaintext.

• The detection probability PD = 1 − PM is the probability that δ
correctly outputs 1, detecting the plaintext.

Note a potential misconception: PF is not the rate of false alarms in
general. It is the probability that δ(s) = 1 given that s is noise. In other
words, if you only ever input noise to the detector, about PF of the detections
will be wrong. Likewise, if you only ever input English into the detector,
About PM of the detections will be wrong.

In contrast, if we feed any old input to the detector and count the results,
the rate of false alarms is not necessarily PF . Ultimately, the rate of misses

2Claude Shannon discovered the sentence, “Squdgy fez, blank jimp crwth vox,” which
contains each letter of the alphabet exactly once. Each word is a real word in the English
dictionary, although the sentence is somewhat nonsensical.

4

and false alarms depends on how often the input is noise versus English text.
If the input is always text, then a false alarm can never happen!

So, to press the point just a bit more: these quantities PF and PM are
properties of the algorithm δ(). They do not account for what the user types
in.

Now, let us generalize a bit, to arbitrary decision making. Our algorithm
is trying to decide between the two following hypotheses, involving a random
observation:

H0 The observation Y is distributed according to probability distribution
P0[y]

H1 The observation Y is distributed according to probability distribution
P1[y]

For example, you might have a fair coin with Pr[HEADS] = 1/2 or a
biased coin with Pr[HEADS] = 1/3. After how many coin flips should you
decide which is the case? How many coin flips will you want before making
a decision? Is the string HTTHTHTTHTHHHHTHTHHHHTH a sign that the coin is
fair or biased?

2.3 What exactly do we want?

In the end, we want an algorithm that does a “good job” of detecting En-
glish amid the noise of cryptotext. But to accomplish this, we must define
quantitatively what we mean by “good.”

There are several different approaches to defining the performance of an
hypothesis test. Here are three common approaches:

• The Bayesian approach: mistakes incur some kind of penalty. Maybe
we face different penalties for different kind of mistakes (e.g., a false
alarm isn’t so bad compared to a miss.) Likewise, we are rewarded for
success. Each kind of success and failure has a probability as well as
a cost, so we will try to minimize the average cost. This will be the
approach we use.

• The Minimax approach: this is like the Bayesian approach, except we
don’t know exactly the probability of success or failure. To correct
this we consider the worst case (the “max” in “minimax”) and try to
minimize the cost in the worst case (the “min” in “minimax.”)

5

• The Neyman-Pearson approach: suppose you must keep the false
alarms below an absolute limit. So we fix that PF < α for some
value α > 0, and try to maximize PD subject to that constraint.

You can probably see the motivation behind these three ideas. The first
approach makes sense in a lot of engineering applications, in which what
really matters is overall cost, and we have all the information about what
we are testing. The third approach makes sense in a court of law or other
adversarial situations; it also makes sense when we can’t realistically assign
relative costs to false positives and false negatives.

Thankfully, all three of these approaches lead us to the same basic kind
of statistical test.

2.4 How to read a ROC (receiver operating characteristic)

Suppose we have settled on an algorithm to separate English from gibberish.
We now want a way to assess how good it is. Maybe it’s the best possible
algorithm, but even the best is pretty worthless. Maybe its performance can
be tweaked to make it more cautious or more sensitive. A ROC diagram
allows us to visualize its performance.

A ROC is simply a plot of the false alarm and detection probabilities of
an hypothesis test (or detector). The x-axis shows PF , and the y-axis shows
PD = 1 − PM .

Many detector algorithms have a variable sensitivity or threshold, so
there is no single value for PD or PF . Rather, the plot often takes the form
of a curve, each point corresponding to one value of the detector threshold.

Notice that ROC curves stretch from the point (0,0) to (1,1). This is
because with a suitable threshold, the detector will always declare a miss or
always declare a hit. Also note that the curves fall above the line y = x.
They had better: if you imagine a “detector” that ignores the input and
simply guesses an answer, its performance will fall along the line y = x,
because PF = PD. A detector that falls below the line would make no sense;
you could turn that into a better detector by reversing the outputs.

How do we use a ROC to decide the best parameter value for our test?
In other words, what point on the ROC curve is “best?” If we are using a
Bayesian approach, any pair (PF , PD) gives us an overall cost. For a fixed
cost c, the set of all points (PF , PD) with that cost will form a straight line
Lc, of fixed slope. All the cost lines are parallel, for reasons we discuss in
detail below. So, the “best” point on the ROC curve is one tangent to a
cost line.

6

Figure 1: A ROC diagram, showing curves for 3 different detectors. The
one labeled “GGD” gives the best performance.

Using the Neyman-Pearson approach, we draw a vertical line for a fixed
PF value. We use a point where this line intersects the curve.

2.5 The optimal hypothesis test

Recall that we have two hypotheses about a random observation Y , either
that Y ∼ P0 or Y ∼ P1 (the ∼ symbol means, “is distributed according
to.”) We also have several other parameters that factor into our decision:

• The costs of guessing: the number Cij is the cost of guessing hypoth-
esis i, when in fact hypothesis j is the right one. Usually Cii = 0 (no
cost for guessing right,) and in many cases Cij = 1, i 6= j – a situation
called uniform costs.

Sometimes it will be handy to set the costs differently, if a false alarm
is worse than a miss.

• The a priori probabilities, or priors, are the probabilities of the two

7

hypotheses before any data is observed. These are denoted π0 and
π1 = 1−π0: the probabilities that H0 and H1 are correct, respectively.

Now let’s derive the “best” algorithm δ(y) for deciding from y which
hypothesis is true. For the set of all observations Y, we can denote Γ1

the set of all inputs that cause δ(y) to output 1. Γ0 is defined similarly,
and Γ0 ∪ Γ1 = Y.3 We can see that PF = Pr0[Γ1] and PD = Pr1[Γ1].
PM = Pr1[Γ0] = 1 − Pr1[Γ1]. Our average cost is

cost(δ) = π0[C10 Pr 0[Γ1]+C00(1−Pr 0[Γ1])]+π1[C11 Pr 1[Γ1]+C01(1−Pr 1[Γ1])]

This is just the sum
∑

ij Cij Pr[Cij]. Rearranging tells us how to devise an
optimal algorithm:

cost(δ) = π0 Pr 0[Γ1](C10 −C00) + π1 Pr 1[Γ1](C11 −C01) + [π0C00 + π1C01]

The last part in brackets is the same regardless of our choice for δ(y). To
minimize the first part, we want to minimize

∑

y∈Γ1

π0 Pr 0[y](C10 − C00) + π1 Pr 1[y](C11 − C01)

So it makes sense to choose Γ1 to consist of those particular values of y for
which π0 Pr 0[Γ1](C10 − C00) + π1 Pr 1[Γ1](C11 − C01) is negative:

Γ1 = {y : π0 Pr 0[y](C10 − C00) + π1 Pr 1[y](C11 − C01) < 0}

=

{

y :
Pr 1[y]

Pr 0[y]
>

π0(C10 − C00)

π1(C01 − C11)

}

So, this is our algorithm: given an observation y, output 1 if Pr1[y]/Pr0[y] >

τ , where our threshold τ = π0(C10−C00)
π1(C01−C11) .

3This is not always true. There are some algorithms which will make a random guess
for some inputs y. We will ignore such randomized decision rules right now.

8

