Homework Problems

EE 480F

March 3, 2005

1. (a) Write the definition of $H(X)$.
(b) Write the definition of $H(Y \mid X)$ and $H(Y, X)$.
(c) Show that $H(Y, X)=H(Y \mid X)+H(X)$
2. Prove $I(X ; Y)=I(Y ; X)$.
3. On a loaded die, $\operatorname{Pr}[1]=\operatorname{Pr}[2]=\operatorname{Pr}[5]=\operatorname{Pr}[6]=1 / 8$, while $\operatorname{Pr}[3]=$ $\operatorname{Pr}[4]=1 / 4$. A die is equally likely to be fair or loaded, so assume equal priors ($\pi_{1}=\pi_{0}=0.5$), and uniform costs.
For a single die roll:
(a) Show the likelihood ratio test for all six outcomes.
(b) Show whether each outcome is considered evidence that the die is fair or loaded.
(c) What is P_{F} and P_{M} for a single die roll?

Suppose you roll the following sequence: $1,3,2,2,4,5,3$. Do you conclude the die is fair or loaded?
4. Suppose a cipher has perfect secrecy. Must every key be chosen with equal probability?
5. If $H(X)=H(X \mid g(X))$, what does that tell us about $g(x)$?
6. The one-time pad cipher has perfect secrecy. But there is a key ($k=$ $000000000000000 \ldots$) that does nothing: $x=\operatorname{Encrypt}(x, k)$. This means the data is transmitted unencrypted!
(a) Explain why a cipher can have such a flaw and yet be considered "perfect".
(b) Can you fix the cipher so that it does not possess this "weak" key, yet retains perfect secrecy?

