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1 Modular Arithmetic

1.1 Groups

A Group is any set G with some operation defined on them, such that these
four rules hold:

1. Closure: if g ∈ G and h ∈ G, then gh ∈ G.

2. Associativity: For f, g, h ∈ G, f(gh) = (fg)h.

3. Identity: There is an identity 1 ∈ G, so that g1 = 1g = g.

4. Inverses: Every element g ∈ G has an inverse g−1 ∈ G, such that
gg−1 = g−1g = 1.

Examples of groups: the set of real numbers R under addition; the set
of nonzero real numbers R − {0} under multiplication; the set of integers Z

under addition.

1.2 The integers modulo N

Two integers are congruent modulo N if their difference is a multiple of N.
For example, 22 and 30002 are congruent modulo 10. We write 22 ≡ 30002
(mod 10).

The set ZN is a set of N elements {0, 1, 2, · · · , N −1}, with addition and
multiplication defined modulo N.

ZN is a group under addition, but not under multiplication. The set Z
×
N

is the subset of ZN containing all the elements with multiplicative inverses.
For example, Z

×
8 = {1, 3, 5, 7}. A number a has a multiplicative inverse

modulo N , if a and N have no common factors.
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1.3 The Euclidean Algorithm

The Euclidean algorithm is used to find the greatest common divisor (GCD)
of two numbers N and M . It is also used to find the inverse of one number
modulo another. What the algorithm finds is the smallest positive integer
K such that this equation:

Na + Mb = K

...has a solution for some integers a and b. The number K is the GCD of N
and M . If the GCD is 1, the extra numbers a and b tell you the inverses: a
is the inverse of N (mod M); b is the inverse of M (mod N).

The algorithm works as follows: start with the system of equations

x = N

y = M

Assume M < N . Suppose N = kM + R: then subtract k times the bottom
equation from the top, to get

y = M

x − ky = R

...Now R < M . Repeat this process for as long as the right side of the
equations are nonzero. Eventually you will have an equation of the form
Ax+By = R. R is the GCD, and if the GCD is 1, then AN ≡ 1 (mod M).

2 The RSA algorithm

2.1 Euler’s Phi function

The number φ(N) is the size of Z
×
N , or the number of integers from 1 · · ·N

with no factors in common with N . For example, Z
×
15 = {1, 2, 4, 7, 8, 11, 13, 14},

so φ(15) = 8.
The formula for φ(N) is

φ(N) = N ·
∏

p|N

(1 − 1/p)

The productis taken over every distinct prime p that divides N . Example:
φ(100) = 100 · (1 − 1/2) · (1 − 1/5) = 40.
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2.2 Euler’s Generalization of Fermat’s Little Theorem

The theorem is very simple to state: if a,N have no factors in common,

aφ(N) ≡ 1 (mod N)

This says that as we multiply and exponentiate modulo N , the exponents
will behave like an additive group modulo φ(N).

An example application: what is the last digit of m = 71234567? Well, we
want to know m (mod 10), and the formula tells us φ(10) = 4. 74 ≡ 1, so

71234567 = 74·K+3 = (74)K · 73 ≡ 1K · 73

So the last digit is a “3”, because 73 = 343.

2.3 The RSA algorithm

Factoring is hard (see below), so for two appropriately chosen primes p and
q, we can compute N = pq but nobody can determine p or q from N . We
can also compute φ(N) = (p − 1)(q − 1), but nobody else can.

In other words, if we know the factors of N we know how exponents
behave modulo N . Other people don’t.

The RSA algorithm: pick exponents e and d that are inverses modulo
φ(N). Encryption is

C = M e (mod N)

and decryption is

Cd (mod N) ≡ (M e)d ≡ M ed=1+kφ(N) ≡ M · 1k ≡ M

3 Other Topics

3.1 Diffie-Hellmann-Merkle key exchange

The discrete log problem is difficult: if I have a large prime p, and a generator
g (meaning that every element of Z

×
p can be written as ga for some a), then

it is easy to compute H = gh (mod p), but difficult to derive h given H.
Exponentiation becomes a one-way function.

So, given a public prime p and generator g, Alice and Bob can each
choose a random secret hA, hB , and compute their exponents HA = ghA

(mod p), HB = ghB (mod p).
If Alice and Bob want to communicate, Bob can raise Alice’s public

number to the power of his secret exponent: k = HhB

A = ghAhB (mod p).
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Alice does the same, and arrives at the same number k = HhA

B = ghAhB

(mod p). Nobody else can compute this number without either possessing
one of the secret values hA or hB , or having some efficient algorithm for
computing discrete logarithms.

3.2 The El Gamal Encryption Algorithm

This encryption algorithm is simply the DHM key exchange rephrased as an
encryption method.

Alice constructs a public key consisting of {p, g,HA = ghA (mod p)},
keeping the secret value hA as her private decryption key. Instead of p, g
being public, they are part of Alice’s key.

When Bob wants to send a message m, he chooses a random hB and
computes c = mHhB

A (mod p). He sends the pair {c,HB = ghB (mod p)}
to Alice. The secret hB is randomly chosen for every message.

3.3 Complexity Theory

You should know what P and NP mean:

• P is the set of computational problems solvable in polynomial time.

• NP is the set of computational problems whose solution can be con-
firmed in polynomial time.

“Solvable in polynomial time” means that the running time of the algorithm,
as a function of the input size, is bounded from above by some polynomial
function.

3.4 Steganography

The goal of steganography is undetectable communication. Unlike cryptog-
raphy, whose goal is secrecy of the message, the goal in steganography is
secrecy of the channel. This is much harder to achieve.

The usual approach of steganography is disguising a message as some-
thing innocent, such as an image or audio clip. This innocent object is called
the cover message.

The adversary in a steganographic problem is called the warden. The
warden tries to either catch or prevent covert communication, and falls into
three types:

• The passive warden just listens in on all communications, in search of
anything suspicious.
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• The active warden can add noise to the channel, for example recom-
pressing audio clips or subtly warping images, to prevent a stego al-
gorithm from being used. Message meaning can not be changed.

• The malicious warden is allowed to drastically change messages, and
even forge messages from one person to another.

For covert communication, the embedder hopes that no statistical test
can distinguish a natural message from a cover message. Since manipulation
of natural data can induce all sorts of unusual statistics, there is no provable
way to embed undetectably.

One application of steganography is watermarking. Watermarks are
short labels embedded in multimedia for purposes of tracking, access con-
trol, and copyright. Watermarks need to be imperceptible, and also robust
to compression, noise, AD/DA conversion and other innocent operations.
Ideally they would also be immune to deliberate attempts to wipe away
the watermark, but in most realistic scenarios that kind of robustness is
impossible.

A final note: if covert communication is possible using a shared secret
key, then it is possible to construct a “public-key” stego system. That is, it
is possible to perform key exchange without the warden noticing. In 1998,
it was discovered that covert key exchange is possible even under an active
warden–although an efficient key exchange was not discovered until 2004.
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