1. A cipher is closed if encrypting twice with two separate keys is equivalent to encrypting only once with a third key. For example, performing the shift cipher twice with shifts of 3 and 2 is the same as shifting once with a shift of 5 .
Determine if the following ciphers are closed:
(a) Vigenère encryption
(b) The affine cipher
(c) Playfair cipher
(d) The Vatsyayana cipher from art 45 of the Kama Sutra
2. Is it a good thing or a bad thing for a cipher to be closed?
3. Consider the following permutations:

$$
\begin{aligned}
& f=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
B & A & D & C & F & E & H & G
\end{array}\right) \\
& g=\left(\begin{array}{llllllll}
A & B & C & D & E & F & G & H \\
D & E & F & G & H & A & B & C
\end{array}\right)
\end{aligned}
$$

Write the following permutations as a product of disjoint cycles:
(a) f
(b) g
(c) $f g$
(d) $g f$
(e) $f^{2} g$
(f) f^{-1}
(g) $f^{-1} g f$
4. Suppose we are permuting the set $S=\{1,2,3, \cdots N\}$. If $1<m \leq N$, Let $f=(1,2, \cdots m-1)$ and $g=(1,2, \cdots m)$. What permutation is $f g^{-1}$?

Supplementary 560 Questions

1. Let f and g be permutations of $S=\{A, B, C, D, E\}$. We will say that $f \equiv g$ if $f g^{-1}$ maps D to D and E to E. That is to say, $f \equiv g$ if the permutation $f g^{-1}$ leaves the last two elements alone.
Prove:
(a) $f \equiv f$
(b) If $f \equiv g$ then $g \equiv f$
(c) If $a \equiv b$ and $b \equiv c$ then $a \equiv c$

A relation \equiv that satisfies these three rules is called an equivalence relation. Examples of equivalence relations include: congruence of triangles, similarity of triangles, coterminality of angles $\left(370^{\circ} \equiv 10^{\circ}\right)$, equivalence of two integers modulo N, equipollence of sets-sets A and B are equipollent ("equally counted") if there exists a bijection between them - equality of magnitude/length/size/area/volume/measure of any measurable things, etc. Basically any way two things can be "practically the same" without being exactly equal, is usually an equivalence relation.
2. Let f and g be permutations of $S=\{A, B, C, D, E\}$. Determine if the following are equivalence relations. If not, provide a counterexample.
(a) $f \equiv g$ if $f g=g f$.
(b) $f \equiv g$ if $f=g^{k}$ for some integer k.
(c) $f \equiv g$ if some h exists with $f=h g h^{-1}$.
3. If \equiv is an equivalence relation, and x is a thing, the equivalence class of x is the set of all things equivalent to x (and also to each other).
For example, under coterminality of angles, the equivalence class of 45° is the set $\left\{\cdots-675^{\circ},-315^{\circ}, 45^{\circ}, 405^{\circ}, 765^{\circ}, 1125^{\circ} \cdots\right\}$
For the equivalence relation of problem 1, describe the equivalence class of the cycle $f=(A B C D E)$. How big is it?

