EECE 405/560 --- Arithmetic assignment

1. Compute the following values of ϕ :
2. $\phi(20)$
3. $\phi(89)$
4. $\phi(1048576)$
5. $\Phi\left(p^{n}\right)$ for any prime number p
6. Compute the following GCDs. Use the Extended Euclidean algorithm and show your work:
7. $\operatorname{GCD}(100,35)$
8. $\operatorname{GCD}(256,35)$
9. GCD(11111111111111,11111111)
10. Prove that $\operatorname{GCD}(\mathrm{a}+\mathrm{b}, \mathrm{b})=\mathrm{GCD}(\mathrm{a}, \mathrm{b})$
11. Compute the following inverses or powers:
12. $3^{-1}(\bmod 256)$
13. $3^{-1}(\bmod 1000)$
14. $21^{-1}(\bmod 35)$
15. $3^{999}(\bmod 100)$
16. Give an example of an odd number n where $\phi(n)<n / 2$.
17. Write all the elements of \mathbb{Z}_{21}, and also write their squares. What are the square roots of 1 ?
18. Find a number X that is congruent to $5(\bmod 37)$ and congruent to $7(\bmod 13)$.

Supplemental 560 Problems:

1. Let G be a group with operation \bullet, and $\mathrm{H} \subseteq \mathrm{G}$ is a subset of G . If H is closed under the - operation, is it also a group? Why or why not?
2. Let G be a finite group, and $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$. Define the three sets:

$$
\begin{aligned}
& A=\left\{a, a^{2}, a^{3}, \cdots a^{n}=e\right\}, \text { the set of powers of } A ; \\
& b A=\left\{b a, b a^{2}, b a^{3}, \cdots b a^{n}=b \cdot e=b\right\} \\
& c A=\left\{c a, c a^{2}, c a^{3}, \cdots c a^{n}=c \cdot e=c\right\}
\end{aligned}
$$

1. Prove that cA and bA are either completely disjoint or completely equal.
2. Prove that $\mathrm{cA}=\mathrm{bA}$ if and only if $\mathrm{b}^{-1} \mathrm{c} \in \mathrm{A}$
3. Give an example of a group with two disjoint bA and cA
4. A group element $\mathrm{a} \in \mathrm{G}$ is called a generator if every element of G is a power of a ; that is to say, if $A=\left\{a, a^{2}, a^{3}, \cdots a^{n}=e\right\}$ then $A=G$. Under addition modulo 26,3 is a generator while 4 is not.
5. Give an example of a group with no generators.
6. Give an example of a group where every element is a generator except for the identity.
7. Suppose $n=p q$ is the product of two primes. If there are only two square roots of 1 $(\bmod n$,$) then prove that one of the primes is 2$.

Hint: if $A=p^{-1}(\bmod q)$ and $B=q^{-1}(\bmod p)$, then any number of the form $(\pm A p+ \pm B q)$ is a square root of 1 . How can there be only two numbers of this form?

