EECE 405/560 --- Arithmetic assignment

- 1. Compute the following values of φ :
 - 1. φ(20)
 - 2. φ(89)
 - 3. φ(1048576)
 - 4. $\phi(p^n)$ for any prime number p
- 2. Compute the following GCDs. Use the Extended Euclidean algorithm and show your work:
 - 1. GCD(100,35)
 - 2. GCD(256,35)
 - 3. GCD(111111111111,1111111)
- 3. Prove that GCD(a+b, b) = GCD(a, b)
- 4. Compute the following inverses or powers:
 - 1. 3⁻¹ (mod 256)
 - 2. 3⁻¹ (mod 1000)
 - 3. 21 ⁻¹ (mod 35)
 - 4. 3⁹⁹⁹ (mod 100)
- 5. Give an example of an odd number n where $\phi(n) < n/2$.
- 6. Write all the elements of \mathbb{Z}_{21} , and also write their squares. What are the square roots of 1?
- 7. Find a number X that is congruent to 5 (mod 37) and congruent to 7 (mod 13).

Supplemental 560 Problems:

- 1. Let G be a group with operation ●, and H⊆G is a subset of G. If H is closed under the operation, is it also a group? Why or why not?
- 2. Let G be a finite group, and $a,b,c\in G$. Define the three sets:

A = {a, a^2 , a^3 , \cdots $a^n=e$ }, the set of powers of A; bA = {ba, ba^2 , ba^3 , \cdots $ba^n=b \cdot e=b$ } cA = {ca, ca^2 , ca^3 , \cdots $ca^n=c \cdot e=c$ }

- 1. Prove that cA and bA are either completely disjoint or completely equal.
- 2. Prove that cA=bA if and only if $b^{-1}c \in A$
- 3. Give an example of a group with two disjoint bA and cA
- A group element a∈G is called a *generator* if every element of G is a power of a; that is to say, if A= {a, a², a³, ··· aⁿ=e} then A=G. Under addition modulo 26, 3 is a generator while 4 is not.
 - 1. Give an example of a group with no generators.
 - 2. Give an example of a group where every element is a generator except for the identity.
- 4. Suppose n=pq is the product of two primes. If there are only two square roots of 1 (mod n,) then prove that one of the primes is 2.

Hint: if $A=p^{-1} \pmod{q}$ and $B=q^{-1} \pmod{p}$, then any number of the form $(\pm Ap + \pm Bq)$ is a square root of 1. How can there be only two numbers of this form?